I think I almost get there, but something's not right, and need your help.(adsbygoogle = window.adsbygoogle || []).push({});

if F(ψa,ψb) is a complex valued (scalar) functional of the two variable vectors ψa and ψb with linearity properties. Show that F can be represented as an inner product F(ψa,ψb)=(ψa, Aψb), for every ψa,ψb and the previous equation defines a linear operator A uniquely

I write ψa and ψb in terms of basis {φk} and {φi}

ψa= ∑F(ψa,ψb)* φk

ψb=∑F(ψa,ψb)* φi Then

(ψa, Aψb)= (∑F(ψa,ψb)* φk, A∑F(ψa,ψb)* φi ) since ∑F(ψa,ψb)* is scalar, I can take them out

= ∑F(ψa,ψb)* ∑F(ψa,ψb) (φk, Aφi) let k=i and A=|φk> <φk|

= F(ψa,ψb)* F(ψa,ψb) <φk |φk> <φk|φk >

but then I don't get the functional F(ψa,ψb), instead I get its square.

if I write ψb=∑bi φi, everything else stay the same, I get either a functional times bk (or bi, the same) or I get

A= bk |φk> <φk|, but then A is not unique, bc bk can be anything.

What's going on? any suggestion? thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Merzbacher QM exercise 9.8

**Physics Forums | Science Articles, Homework Help, Discussion**