(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [tex](X_k,d_k)[/tex], [tex]1\leq k<\infty [/tex] be metric spaces

Let [tex]X=\prod _{k=1}^{\infty} X_k [/tex] be their Cartesian product,

that is, let [tex]X[/tex] be the set of sequences [tex](x_1,x_2,...)[/tex], where [tex]x_j\in X_j[/tex] for [tex]1\leq j < \infty [/tex]

Show that a sequence [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges in [tex]X[/tex] if and only if [tex] \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges in [tex] X_j [/tex] for each [tex] j \geq 1. [/tex]

2. Relevant equations

3. The attempt at a solution

Assume [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges in [tex]X[/tex].

then [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } = (a_{11},a_{21},...),(a_{12},a_{22},...),...[/tex] where [tex] a_{ik} \in X_i [/tex]

So, [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges to [tex]c_i [/tex]

Assume [tex] \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges in [tex]X_j [/tex] for each [tex] j \geq 1 [/tex]

so, [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } = (a_{11},a_{21},...),(a_{12},a_{22},...),...[/tex] where [tex] \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } = a_{j1},a_{j2},...[/tex] converges to [tex]c_j[/tex]

So, [tex] \left\{x^{(k)}\right\}_{k=1}^{ \infty } [/tex] converges to [tex] (c_1,c_2,...) [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Metric Spaces (Proof)

**Physics Forums | Science Articles, Homework Help, Discussion**