The metric ds = |dz|/(1 + |z|^2) has constant positive Gauss curvature equal to 4 and extends to the complex plane plus the point at infinity. How does this metric relate to the usual metric of constant Gauss curvature computed from the unit sphere in Euclidean 3 space?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Metrics on the 2 sphere

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**