(a) Use the Midpoint Rule and the given data to estimate the value of the integral [tex]\int _0 ^{3.5} f(x)\: dx[/tex](adsbygoogle = window.adsbygoogle || []).push({});

[tex]x=0.0\quad 0.4\quad 0.8\quad 1.2\quad 1.6\quad 2.0\quad 2.4\quad 2.8\quad 3.2[/tex]

[tex]f(x)=6.8\quad 6.5\quad 6.3\quad 6.4\quad 6.9\quad 7.6\quad 8.4\quad 8.8\quad 9.0[/tex]

(b) If it is known that [tex]-4 \leq f^{\prime \prime} (x) \leq 1[/tex] for all [tex]x[/tex], estimate the error involved in the approximation in part (a).

The answers given in my textbook are:

(a) [tex]23.44[/tex]

(b) [tex]0.341\overline{3}[/tex]

Anyhow, this is what I have:

[tex]\bar{x}_i=0.2\quad 0.6\quad 1.0\quad 1.4\quad 1.8\quad 2.2\quad 2.6\quad 3.0[/tex]

Then, I simply figured out the arithmetic mean of subsequent values of [tex]f(x)[/tex] (taken two at a time)

[tex]f(\bar{x}_i)=6.65\quad 6.4\quad 6.35\quad 6.65\quad 7.25\quad 8.0\quad 8.6\quad 8.9[/tex]

which makes it possible to obtain

[tex]M_8 = \Delta x \sum _{i=1} ^{8} f(\bar{x}_i) = \frac{3.2-0}{8}(6.65+ 6.4+ 6.35+ 6.65+ 7.25+ 8.0+ 8.6+ 8.9) = 23.52[/tex]

For part (b), I just figured out the error bound

[tex]\left| E_M \right| \leq \frac{K(b-a)^3}{24n^2}[/tex]

We are given [tex]-4 \leq f^{\prime \prime} (x) \leq 1[/tex], then [tex]\left| f^{\prime \prime} (x) \right| \leq 4 = K[/tex]. So, it follows

[tex]\left| E_M \right| \leq \frac{4(3.2-0)^3}{24(8)^2} = 0.085\overline{3}[/tex]

As you can see, my results are a bit different. In part (a), the author of my textbook could have applied some weighted average (I really don't know!!!). In part (b), there is nothing different I could do (so I wonder what is wrong with my calculations).

Any help is highly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Midpoint integral approx.

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**