I was in my Calculus class and a problem came up that I couldn't figure out. Our teacher wrote down a problem on the board to test us on the upcoming exam next week and he called upon us randomly, but no one got it. I thought I figured it out, but I was off. Hopefully you can help me here.(adsbygoogle = window.adsbygoogle || []).push({});

A person on a boat in a lake is 9 km from the shore and must go to a

point 12 km down the shoreline in the shortest possible time. The

person can walk 8 km per hour and the boat can travel r km per hour.

a) Assume that the person should travel by boat and by foot. Let d be

the distance down the shoreline the person should strike land for the

shortest total travel time. Write d as a function of r.

b) Sketch the graph of the function d(r). Determine the slowest speed

of the boat so the shortest possible time criterion is met by making

the entire trip by water. Use this to give the domain of the function

in the context of this problem.

c) Determine the concavity of the graph of the function d over the

domain stated in part b. What information does the concavity give about the relation between d and r?

Our class attempted this problem and wrote an equation based on the

given information. We took the derivative of our equation to find the

answer to part a, but the answer we arrived at was different from the

answer given in the book. Our answer was d=(r-36)/4, from the equation d(r) = r * sqrt(d^2+81) + 8(12-d). As stated, d is the distance down the shoreline where the person should strike land. Thus 12-d is the distance from the point where the person lands to his or her destination. Using the Pythagorean Theorem, we found the distance from the boat to the point where the person will land to be the square root of (d^2 + 81). The answer the book gave us is d(r) = 9r/sqrt(64-r^2).

I, (and the class can't figure out) or understand what we did wrong, and I hope someone will be able to help me for tomorrow since no one figured it out. Some got close, but no one got it completely.

Here is what I think:

I believe that we were writing d in terms of rate, not rate and time, so we need to get rid of the time component, right? Then time for the trip is t = sqrt(d^2+81)/r + (12-d)/8, right? So then you would differentiate it?

But then I get lost. :)

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Minimal Time, hmm.

Loading...

Similar Threads - Minimal | Date |
---|---|

A Certain convex minimization problem | May 22, 2016 |

A Solving polynomial coefficients to minimize square error | May 19, 2016 |

Calc of variations, minimizing functionals question | Nov 20, 2015 |

Minimizing surface area of a shaker | Oct 29, 2015 |

Minimizing functions | Apr 7, 2015 |

**Physics Forums - The Fusion of Science and Community**