I know I've asked quite a few questions, but I really am making an effort to get as far as I can. The engineer of a train moving along a level track with a velocity of 42.0 m/s sights a freight train at a distance of d ahead of him on the same track moving in the same direction with a velocity of 18.0 m/s. He applies the brakes, giving his train a constant acceleration of -1.4 m/s^2. What is the minium distance d such that there is no collision?(adsbygoogle = window.adsbygoogle || []).push({});

Here's what I came up with. I used the formula d/delta x = 42.0t+1/2(-1.4)t^2. I derived the formula giving me 42+(-1.4)=18. Solved for t getting 17.143. Plugged t back into the original formula I used and ended up getting 514.288. That isn't the correct distance..

Here's another question..

Let's say that you are driving a car that accelerates according to a=B/v where B= 130.0m^2/s^3 is a parameter that is related to the ratio of your car's power to its weight, and c is your car's speed, in m/s. Assume that you are initially traveling with a speed of 11.5 m/s. At t=0 you step on the gas pedal. The car performs a constant-power acceleration until you reach a speed of 23.5 m/s. What is the time interval needed to make this change of speed.

I solved for a by plugging in the values given for B and v, so a=130.0m^2/s^3/11.5 m/s. I then got a= 11.3m/s^2. From there I went to 11.5+11.3t=23.5. Solved for t and got 1.062 s. 1.062s isn't the correct answer. Was my approach to this problem incorrect?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Minimum distance

**Physics Forums | Science Articles, Homework Help, Discussion**