Mobius strip and spinors

  • Thread starter jfy4
  • Start date
  • #1
649
3

Main Question or Discussion Point

Hi,

I was pondering a bit about the mobius strips and I was wondering if there is a relationship between spinors and there transformation under rotations and that, in a manner of speaking, one must go around a mobius strip twice to return to the original position. To me it seems there would be some underlying relationship here.

I was thinking, abstractly, some sort of closed path, [itex]\gamma[/itex], with non-zero torsion; such that after traversing the loop once, one has been spun around half way, and then after a subsequent traversal, another half to return to the original orientation.

Are there such closed paths such that, say, after one traversal the torsion of the path returns one to their original orientation (a full rotation) and other paths like the one mentioned above.

Thanks in advance,
 
Last edited:

Answers and Replies

  • #2
lavinia
Science Advisor
Gold Member
3,236
623
Not sure about your question but the Spin groups are two fold covers of the rotation groups of Euclidean space. I don't know much about these groups but SO(3) is covered by the 3 sphere and is homeomorphic to the 3 dimensional real projective space. Projective space has fundamental group Z/2Z that arises from a cross cap around its equator. A cross cap is a Moebius band with a disk attached to its bounding circle.
 

Related Threads on Mobius strip and spinors

  • Last Post
Replies
1
Views
823
  • Last Post
Replies
13
Views
4K
  • Last Post
Replies
11
Views
634
  • Last Post
Replies
8
Views
4K
  • Last Post
Replies
3
Views
4K
Replies
1
Views
2K
Replies
14
Views
14K
Replies
2
Views
5K
  • Last Post
Replies
1
Views
3K
Replies
7
Views
6K
Top