1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Model of RL Circuit using the Energy function

  1. May 2, 2017 #1
    1. The problem statement, all variables and given/known data
    From the textbook:
    We define an energy function
    \begin{equation}
    V(\textbf{x},t) \leq 0
    \end{equation}
    for the system
    \begin{equation}
    \dot{\textbf{x}} = \textbf{f}(\textbf{x},\textbf{u},t).
    \end{equation}
    The function V may be the total energy of the system, or it may be some other function, usually related to energy. When the system evolves the time derivative of the energy function is
    \begin{equation}
    \dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \textbf{x}} \textbf{f}(\textbf{x},\textbf{u},t).
    \end{equation}
    (end of text from textbook)

    The question:
    A voltage controlled DC motor ca be described by the model
    \begin{equation}
    L_a \frac{d i_a}{dt} = -R_a i_a - K_E \omega_m + u_a
    \end{equation}
    \begin{equation}
    J_m \frac{d \omega_m}{dt} = K_T i_a - T_L
    \end{equation}

    Let K_E = K_T and T_L =0 and u_a = 0
    show that system is stable by using the energy function
    \begin{equation}
    E = \frac{1}{2} L_a i_a^2 + \frac{1}{2} J_m \omega_m^2
    \end{equation}
    2. Relevant equations
    The method is simple, I just need to find the time derivative of the energy function, to prove the system' stability, but I keep messing up somewhere.
    3. The attempt at a solution
    \begin{equation}
    \dot{E} = \frac{\partial E}{\partial t} + \frac{\partial E}{\partial \textbf{x}} \textbf{f}(\textbf{x},\textbf{u},t)
    \end{equation}
    Lets start with the first part on the right hand side of the equation
    \begin{equation}
    \frac{\partial E}{\partial t} = L_a i_a \frac{d i_a}{dt} + J_m \omega_m \dot{\omega_m}
    \end{equation}

    after som rearanging and substituting, I find that this expression leads to

    \begin{equation}
    -R_a i_a^2
    \end{equation}

    Now the second part of the right hand side:
    \begin{equation}
    \begin{bmatrix}
    \frac{\partial E}{\partial i_a} & \frac{\partial E}{\partial \omega_m} \\
    \end{bmatrix}

    \begin{bmatrix}
    -\frac{R_a i_a}{L_a} - \frac{K_E \omega_m}{L_a} + \frac{1}{L_a} u_a \\
    \frac{K_T i_a}{J_m} - \frac{T_L}{J_m}
    \end{bmatrix}
    \end{equation}

    \begin{equation}

    \begin{bmatrix}
    L i_a & J_m \omega_m
    \end{bmatrix}

    \begin{bmatrix}
    -\frac{R_a i_a}{L_a} - \frac{K_E \omega_m}{L_a} + \frac{1}{L_a} u_a \\
    \frac{K_T i_a}{J_m} - \frac{T_L}{J_m}
    \end{bmatrix}

    \end{equation}
    which also leads to

    \begin{equation}
    -R_a i_a^2
    \end{equation}

    (Atempt finnished)

    The solutions manual states that
    \begin{equation}
    \dot{E} = -R_a i_a^2
    \end{equation}

    and not

    \begin{equation}
    \dot{E} = -2R_a i_a^2
    \end{equation}

    which I keep getting, I think my multivariable calculus is a bit rusty, can someone please be so kind to help me out? It would have been much appritiated. Thanks
     
  2. jcsd
  3. May 7, 2017 #2
    Thanks for the thread! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post? The more details the better.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Model of RL Circuit using the Energy function
  1. RL Circuit (Replies: 3)

Loading...