Moment of Inertia 2

  • Thread starter joemama69
  • Start date
  • #1
399
0

Homework Statement




a) A disk with radius R and mass M is rolling without slipping on a level surface, as shown. The moment of inertia about an axis perpendicular to the page and through the center of the disk is I. If the center of
the disk is moving at speed v, what is the kinetic energy of the disk?
b) For the disk described in part (a), what is the instantaneous speed vL, relative to the ground, of the lowest point on the disk? What is the instantaneous speed vH, relative to the ground, of the highest point on
the disk?

c) Suppose the disk described in part (b) is allowed to roll down an inclined plane, oriented at an angle θ relative to the horizontal, as shown.
Assume that it rolls without slipping, but ignore all frictional effects other than the friction that is necessary to prevent it from slipping. Let g
denote the acceleration of gravity. Calculate the magnitude aCM of the acceleration of the center of mass.

Homework Equations





The Attempt at a Solution



part a)

T = .5mv2 + .5Iw2

is this right, its barley even a question

part b)

Wheight = v/R
Wbottom = -v/R

part c)

mgsinQ - f = ma

fr = .5mr2[tex]\alpha[/tex]

mgsinQ - .5ma = ma

gsinQ = 3/2 a

a = 2/3 gsinQ
 

Attachments

  • 3a.pdf
    4.7 KB · Views: 67
  • 3b.pdf
    6 KB · Views: 72
  • 3c.pdf
    7.1 KB · Views: 74

Answers and Replies

  • #2
ideasrule
Homework Helper
2,266
0
part a)

T = .5mv2 + .5Iw2

is this right, its barley even a question

Yup, that's right.

part b)

Wheight = v/R
Wbottom = -v/R

The question asks for velocity relative to the ground, not for angular speed relative to the center of mass. If the bottom of the wheel is moving at v relative to the center of mass and the center of mass is moving at v relative to the ground, how fast is the bottom moving with respect to the ground? How about the top?

part c)

mgsinQ - f = ma

fr = .5mr2[tex]\alpha[/tex]

mgsinQ - .5ma = ma

gsinQ = 3/2 a

a = 2/3 gsinQ
Yeah, that's right. An easier way to do things is to consider the contact point as the "pivot" and apply the rotational equations to that. "I" would be 0.5mR^2 + mR^2 = 1.5mR^2 and torque would be mgRsinQ, so:

mgRsinQ=1.5mR^2*alpha
gsinQ=1.5R*a/R
a=2/3gsinQ
 

Related Threads on Moment of Inertia 2

Replies
3
Views
329
  • Last Post
Replies
3
Views
922
  • Last Post
Replies
1
Views
829
Replies
1
Views
5K
  • Last Post
Replies
16
Views
3K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
6
Views
2K
Top