(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

In Cartesian coordinate system are two point masses of mass [tex]m[/tex] connected with massless rod. Masses are in [tex](0,r,0)[/tex] and [tex](0,-r,0)[/tex].

a) Find the moment of inertia tensor.

b) Points were rotated in OXY plane such that angle between rod and Y-axis is [tex]\vartheta[/tex] (new cooridnates of masses are [tex](-r \sin \vartheta, r \cos \vartheta, 0)[/tex], [tex](r \sin \vartheta, -r \cos \vartheta, 0)[/tex]

2. Relevant equations

[tex]\hat{I} = \left(\begin{matrix}

I_{xx} & I_{xy} & I_{xz}\\

I_{yx} & I_{yy} & I_{yz}\\

I_{zx} & I_{zy} & I_{zz}\\

\end{matrix}

\right)[/tex]

[tex]I_{xx} = \sum _{k} m_{k} (y^{2}_{k}+z^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - x^{2}_{k})\![/tex]

[tex]I_{yy} = \sum _{k} m_{k} (z^{2}_{k}+x^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - y^{2}_{k})\![/tex]

[tex]I_{zz} = \sum _{k} m_{k} (x^{2}_{k}+y^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - z^{2}_{k})\![/tex]

[tex]I_{xy} = I_{yx} = - \sum _{k} m_{k} x_{k}y_{k}\![/tex]

[tex]I_{yz} = I_{zy} = - \sum _{k} m_{k} y_{k}z_{k}\![/tex]

[tex]I_{zx} = I_{xz} = - \sum _{k} m_{k} z_{k}x_{k}\![/tex]

3. The attempt at a solution

a) Using relevant equations I get

[tex]\hat{I} = \left(\begin{matrix} 2 m r^2 & 0 & -2 m r^2 \\ 0 & 4 m r^2 & 0 \\ -2mr^2 & 0 & 2mr^2 \end{matrix}\right)[/tex]

is it correct?

b) I'm not sure, hence I'm asking :) - is it enough (and correct) to calculate:

[tex]\hat{I}' = \hat{I} \left(\begin{matrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{matrix}\right)[/tex] or maybe [tex]\hat{I}' = \left(\begin{matrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{matrix}\right) \hat{I}[/tex] or sth else?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Moment of inertia tensor problem

**Physics Forums | Science Articles, Homework Help, Discussion**