Momentum Eigenfunction

Safinaz

1. Homework Statement

$\psi_1$ and $\psi_2$ are momentum eigenfunctions corresponding to
different momentum eigenvalues $p_1 \not= p_2$. Is $\psi_1$ + $\psi_2$ also momentum eigenfunction ?

2. Homework Equations

Yes
No
It Depends ?

3. The Attempt at a Solution

I think yes, because

$$\frac{h}{i} \frac{d}{dx} \psi_1 = p_1 \psi_1,$$
$$\frac{h}{i} \frac{d}{dx} \psi_2 = p_2 \psi_2,$$
Then
$$\frac{h}{i} \frac{d}{dx} (\psi_1+\psi_2) = p_1+p_2 (\psi_1+\psi_2),$$

is valid also

Related Introductory Physics Homework Help News on Phys.org

blue_leaf77

Homework Helper
Think again how you should calculate
$$\frac{h}{i} \frac{d}{dx} (\psi_1+\psi_2)$$
from
$$\frac{h}{i} \frac{d}{dx} \psi_1 = p_1 \psi_1,$$
$$\frac{h}{i} \frac{d}{dx} \psi_2 = p_2 \psi_2,$$

Safinaz

Ya ..

$$\frac{h}{i} \frac{d}{dx} (\psi_1+\psi_2) = (p_1 \psi_1+ p_2 \psi_2),$$
so $(\psi_1+\psi_2)$ is not an Eigenfunction .

blue_leaf77

Homework Helper
No, it's not.

"Momentum Eigenfunction"

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving