It means the following. Suppose you have a state, ##|\psi\rangle## with parity ##P=\pm1##. Then you apply the momentum operator to it, i.e. ##\hat p|\psi\rangle##. Then the parity of the new state is going to be, ##\hat P\left(\hat p|\psi\rangle\right)=\mp\hat p|\psi\rangle##.
What do you mean by 'on its own'? An operator is always defined through its action. However (I don't know if this is what you were looking for) when you perform a parity transformation, ##x\to-x## (let's stay in 1 dimension for simplicity) you have that ##\frac{d}{dx}\to-\frac{d}{dx}##. Is this what you want to know?
Does this mean if I diiferentiate an even function I get an odd function and vice versa ? If the function is neither odd or even it remains that way after differentiation ?
Thanks. My original question was about the momentum operator flipping the parity of functions. It seems as though this is solely due to the differential part of the momentum operator ? The -ih(bar) part of the operator doesn't affect the parity ?