Two blocks are free to slide along a frictionless wooden track ABC as shown in Figure P9.20. The block of mass m1 = 4.93 kg is released from A. Protruding from its front end is the north pole of a strong magnet, repelling the north pole of an identical magnet embedded in the back end of the block of mass m2 = 9.60 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision.(adsbygoogle = window.adsbygoogle || []).push({});

The figure shows m1 on a curved ramp at a height of 5 m.

Since it is elastic, I know energy and momentum are conserved. So I have:

(1/2)m1*v1o^2+(1/2)m2*v2o^2 = (1/2)m1*v1f^2+(1/2)m2*v2f^2

and

m1*v1o+m2*v2o = m1*v1f+m2*v2f

m2 is initially at rest, so v2o=0. Now I am not sure how I am supposed to use these to find height, or anything at all for that matter. Can anyone give me a point in the right direction?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Momentum(?) problem

**Physics Forums | Science Articles, Homework Help, Discussion**