1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Momentum Quiestion

  1. Jan 30, 2005 #1
    Two cars collide at an intersection. The first car has a mass of 925kg and was travelling north. The second car has a mass of 1075kg and was travelling west. Immediatly after impact, the first car had a velocity of 52km/hr, 310deg, and the second car had a velocity of 40km/hr, 320deg. What was the speed of each car prior to the collision?

    Is there a velocity formula I can use? One In terms ov V and M?
  2. jcsd
  3. Jan 30, 2005 #2
    I think these are the formulas, but i'm not sure.



    Can anyone help?
  4. Jan 30, 2005 #3
    Yes, those equations are right.
  5. Jan 30, 2005 #4
    What about getting the right directions? When I use those equations the velocity comes out to be negative. Do I just switch the direction?
  6. Jan 30, 2005 #5
    This formula only applies when a moving ball (A) collides with a stationary ball (B). In this case, you can't use this equation. Rather, you have to use conservation of linear momentum (break down into horiz and vert components). The final and initial horizontal momentum is always conserved. The same goes for the vertical momentum.
  7. Jan 30, 2005 #6
    So, after I break up the V1' and V2' velocities into horizontal and vertical vectors, can I solve for all four using those formulas? Aslo, what do I do about the velocities being negative since [tex]M_{1}-M_{2}[/tex] is negative?
  8. Jan 30, 2005 #7
    I don't think you can use those formulae at all, since both masses are moving initially. As far as negative velocities, they simply mean the mass is travelling in a negative direction (this can be anywhere, since it depends what you define as the "positive" direction).
  9. Jan 30, 2005 #8
    Well, that's not good news. Are there any formulae I can use?
  10. Jan 30, 2005 #9
    As far as I know, only




    The only problem is, it seems you're missing one piece of information reguarding the initial speeds.
  11. Jan 30, 2005 #10
    Yeah, what Im missing is what it's asking me to find.
  12. Jan 30, 2005 #11
    Oh yeah, I read the question again, and you do have enough info. Do you understand how to solve it now? :rolleyes:
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?