Here's another one I'm doing just for the fun of it..(adsbygoogle = window.adsbygoogle || []).push({});

"prove that (1 + 1/x) ^ (x + 1) is monotone decreasing"

Okie Dokie..

If it just said show it, I'd be happy. Just plug in n=2, 3, 4.. and it is easy enough to observe that each term is decreasing.

But to prove it is monotone decreasing I must show that a(n) must be greater than a(n-1), that a(n)/a(n-1) < 1, at least for all large n.

What I have so far:

a(n)/a(n-1) = (1 + 1/n)((n^2-1)/n^2)^n

Or (1 + 1/n)(1 - 1/n^2)^n

What's up with this? How can I prove that this ratio is less than one? If the answer is obvious, it just seems to elude me..

This is early on in an old advanced calculus text. It hasn't even begun to talk about derivatives at this point.. I feel like I'm being asked to perform brain surgery with bone knives and bear skins..

any suggestions or hints?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Monotone Decreasing

**Physics Forums | Science Articles, Homework Help, Discussion**