(adsbygoogle = window.adsbygoogle || []).push({}); The problem statement, all variables and given/known data

Prove that if there exists a linear map on V whose null space and range are both finite dimensional, then V is finite dimensional.

The attempt at a solution

I *think* the following is true: For all v in V, T(v) is in range(T), otherwise T(v) = 0 which implies v is in null (T).

Other than that, I know I can write a basis {v_1, ..., v_n} for null(T) and a basis {T(u_1), ..., T(u_m)} for range(T), where range(T) = {T(u) : u is in V}. But since this is a linear map {u_1, ..., u_m} should also be a basis for some U such that U is a subspace of V.

Does anyone know if these assumptions are heading in the right direction?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: More linear maps

**Physics Forums | Science Articles, Homework Help, Discussion**