Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Aerospace Most aerodynamic shape?

  1. Nov 7, 2015 #1
    I mean aerodynamic as in least air resistance.

    Just curious.
     
  2. jcsd
  3. Nov 7, 2015 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Consider: what causes air resistance? How would you go about minimizing it?
    Do you have other constraints? (I.e. a geometric point has zero air resistance.)

    Have you looked for objects that are engineered for low air resistance to see what shapes they tend to have?
     
  4. Nov 7, 2015 #3

    russ_watters

    User Avatar

    Staff: Mentor

    Generally, for the same cross-sectional area, a teardrop shape is most efficient.
     
  5. Nov 13, 2015 #4
    typically the "most" aerodynamics shape sis dictated by constraints...and finding it is very difficult (this is why aerospace engineers are involved with it), with no constraints a point have zero drag so...a point is the answer.
     
  6. Nov 13, 2015 #5

    cjl

    User Avatar

    Most aerodynamic given what constraint? Lowest drag for a given cross sectional area? Lowest drag for a given volume? In general, the shape will tend to be somewhat similar to a teardrop, but it will vary depending on your constraints.
     
  7. Nov 15, 2015 #6
    Let's say lowest drag for a given volume.
     
  8. Nov 15, 2015 #7

    David Lewis

    User Avatar
    Gold Member

    The shape of the Hindenburg Zeppelin hull gives you the lowest drag coefficient-to-volume ratio if you extend the tail cone to a sharp point. (The tail cone was rounded off to fit the hangar in Lakehurst NJ.) I'm assuming incompressible flow (speed << transonic). At very low Reynolds numbers it might be necessary to modify the fineness ratio.
     
  9. Nov 16, 2015 #8

    cjl

    User Avatar

    While the Hindenburg isn't a bad shape for low drag, it isn't quite the ideal. Here's an interesting paper exploring the optimization problem: http://cafefoundation.org/v2/pdf_tech/Drag.Reduction/5.AIAA-48131-445.pdf

    You can see in Fig. 5 that the optimum is somewhat like a teardrop with an elongated nose (the labeled "Body X-35"), though a wide variety of teardrop-like shapes do pretty well (for example the labeled "Dolphin" profile).
     
  10. Nov 22, 2015 #9

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    ... although this is for incompressible flow.
    Looks somewhat like a half-deflated balloon - you know, as it propels itself through the air.
     
  11. Nov 23, 2015 #10

    cjl

    User Avatar

    True. If you start introducing compressibility, it becomes an entirely different problem. That shape should work well up to a couple hundred miles per hour though (~100m/s), at least as far as standard atmospheric conditions are concerned.
     
  12. Nov 23, 2015 #11
    http://www.hornady.com/store/images/P/30731-30-Cal--308-208gr-ELD-Match.jpg [Broken]

    This is a common bullet shape which is very close to optimizing (low) drag for supersonic spin stabilized projectiles.
     
    Last edited by a moderator: May 7, 2017
  13. Nov 23, 2015 #12

    cjl

    User Avatar

    It's not bad, though it would be better with a more complete boat tail (which it does not have because of the requirements of barrel launching as well as spin stability concerns).
     
  14. Nov 23, 2015 #13
    Yes, there is potential to reduce the drag by about 5% more by a more complete boat tail. The longer bullets that result would require a faster twist rate to maintain gyroscopic stability. The longer base would also reduce powder capacity by extending further into the cartridge case. These effects tend to combine to increase peak operating pressures in the barrel without increasing muzzle velocity. There is also the additional challenge of keeping such a design cylindrically symmetric. Imperfections in the overlap between the geometric center and the center of mass create significant inaccuracies as the bullet leaves the barrel. Resulting pitch and yaw also contribute to aerodynamic drag and tend to cancel out the small advantage gained with the longer boat tail.

    We measure a lot of supersonic drag coefficients. In addition to the above practical challenges, a fundamental challenge of supersonic bullet design is that the shape that is ideal at the launch speed (usually close to Mach 3) is not ideal as the speed decays down through Mach 2.0 and then toward Mach 1.0. In long range applications, the compromise is to try and optimize the average drag over the supersonic range.

    Drag vs. Mach Number.PNG
     
  15. Nov 24, 2015 #14
    Nose cone shape is of importance.
    As usual wiki is a primer.
    https://en.wikipedia.org/wiki/Nose_cone_design
    which gives the mathematical equations for several types.
    Nose_cone_drag_comparison.png
    Above graph shows the drag with 1 being favourable to 4 unfavourable versus speed.
     
  16. Nov 24, 2015 #15
    If you are really intersted in this topic just get Fluid Dynamic drag by Hoerner :)
     
  17. Nov 28, 2015 #16

    rcgldr

    User Avatar
    Homework Helper

    Speeds in the range 300kph to 700kph or so are achieved by land speed record vehicles run at places like Bonneville Salt Flats or El Mirage Lake. Most have long tail sections.

    http://en.wikipedia.org/wiki/Bonneville_Salt_Flats#Land_speed_events

    http://en.wikipedia.org/wiki/El_Mirage_Lake

    List of land speed records, some with links to vehicles including images:

    http://en.wikipedia.org/wiki/List_of_vehicle_speed_records#Land_vehicles

    Example wheel driven vehicle with long tail section:

    http://www.teamvesco.com/vesco111.html

    Example motorcycle with a long tail section, 360 view option:

    http://top1ackattack.com
     
  18. Nov 28, 2015 #17
    Some of these appear to flux, like a sine wave. Ie. at Mach 0.9 it has low drag, then at Mach 1 it has high drag, but at mach 1.1 it has low drag again. Is this the natural order of things, or are your statistics incorrect? If your statistics are correct, this would seem to indiciate that air has some kind of inherent frequency, causing wave phase cancellation effects.

    The concept is similar to music, timbre, where the air (instrument) has a wide range of frequencies, and when you get close to the concentrated parts, things become either more or less harmonious.
     
  19. Nov 28, 2015 #18

    rcgldr

    User Avatar
    Homework Helper

  20. Nov 28, 2015 #19
    Whoops. I can see why you'd draw that conclusion from the sample set I typed in my post. (The article talks about the effects of subsonic vs. supersonic.)

    But if you look at the chart it seems to continue even after sonic boom...it goes 0.9 low then 1 high then 1.1 low then 1.25 high then 1.4 low and so forth.
    The von Karman almost seem to be symetrrical, with drag highest at 1.5 and then low drag at 1.0 and 2.0. Which the possibilities in my mind makes this seem to be some kind of phase timbre effect, being analogous to sound theory, or the results in the chart are inaccurate.

    What Im trying to say is Wikipedia provides a chart like this, implying a simple drag related to the sonic boom. 600px-GB528_CD.jpg

    I'm saying its not so simple, I think its more analogous to this video below.
    (can't find it just think of a crazy looking video with sine waves and eq frequencies and such.)
     
    Last edited: Nov 28, 2015
  21. Nov 30, 2015 #20

    cjl

    User Avatar

    I don't see any video, but one thing to keep in mind is that those numbers aren't telling you absolute drag, they're telling you the relative suitability of the shape for that speed regime. All of those shapes will have an absolute drag profile that looks pretty much like the Wiki chart, but the VK happens to be a bit below most of the others at mach 1, and a bit above the others at 1.5, dropping back down below the others at 2. That doesn't mean that the drag quantity is oscillating however.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Most aerodynamic shape?
  1. Car aerodynamics (Replies: 13)

  2. Aerodynamic Speed (Replies: 9)

  3. Aerodynamics Question (Replies: 1)

Loading...