So I'm computing a second order Taylor series expansion on a function that has multiple variables. So far I have this(adsbygoogle = window.adsbygoogle || []).push({});

I(x,y,t)=dI/dx(change in x)+dI/dy(change in y)+dI/dt(change in t)+2nd order terms

Would it still be a better approximation than just he first order if I included some second order terms and not others or no? To be more clear I would use something like this :

I(x,y,t)=First Order Terms+Ixx(dx^2)+Iyy(dy^2)

If this is better than just the first order terms, do you have an explanation as to why it is theoretically? Thanks,

Chris

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Multi-Variable Second Order Taylor Series Expansion, Ignoring SOME second order terms

**Physics Forums | Science Articles, Homework Help, Discussion**