1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Multiple Integrals

  1. Jan 30, 2007 #1
    1. The problem statement, all variables and given/known data
    Hello, I was wondering if someone could help me with the following. Supposed I am asked to find the volume bounded by the cylinders x^2+y^2=1 and the planes y = z, x = 0, z = 0 in the first octant.

    2. Relevant equations
    So this is what I tried to do. The boundaries should be: x is between 0 and 1 and y is between the squareroot of (1-x^2) and 0, or you can have y is between 0 and 1 and x is between the squareroot of (1-y^2) and 0. So wouldn't the double integral be the integral of

    the squareroot of 1-x^2dydx, where you first evaluate it from 0 to the squareroot of (1-x^2), and then you evaluate it again from 0 to 1? Thanks!!!

    3. The attempt at a solution
  2. jcsd
  3. Jan 30, 2007 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    Since you are in the first octant, yes, x runs between 0 and 1. For each x, then y runs from 0 up to the circle, [itex]y= \sqrt{1- x^2}[/itex]. Finally, for each x and y, z runs from 0 up to the plane z= y. The volume is given by
    [tex]\int_{x=0}^1\int_{y=0}^{\sqrt{1-x^2}}\int_{z=0}^y dzdydx= \int_{x=0}^1\int_{y=0}^{\sqrt{1-x^2}}y dydx[/itex]
    No, that is NOT [itex]\sqrt{1- x^2}dydx[/itex]! You don't get the square root until after integrating with respect to y- and then, since the integral of ydy will involve y2, you don't really have a square root to integrate with respect to x!
  4. Jan 30, 2007 #3
    Oh I see now! Thanks!!!
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Multiple Integrals
  1. Multiple integral (Replies: 2)

  2. Multiple integrals (Replies: 6)

  3. Multiple Integrals (Replies: 2)

  4. Multiple Integral (Replies: 6)

  5. Multiple integrals (Replies: 6)