- #1

- 48

- 0

## Main Question or Discussion Point

Can anyone explain why [tex]\frac{-1}{x_0^2} (x - x_0) = \frac{-x}{x_0^2} + \frac{1}{x_0}[/tex]?

Is [tex]\frac{-1}{x_0^2} (x - x_0) = \frac{-1}{x_0^2} . \frac{(x - x_0)}{1}[/tex]?

After that I multiply to get [tex]\frac{-1}{x_0^2} (x - x_0) = \frac{-x + x_0}{x_0^2} = \frac{-x}{x_0^2} + \frac{x_0}{x_0^2}[/tex].

Then divide [tex]x_0[/tex] into [tex]x_0^2[/tex] which gives [tex]x_0^{-1}[/tex] which equals [tex]\frac{1}{x_0}[/tex].

The equation I am following misses all the intermediate steps so I want to make sure I am understanding it correctly.

Is [tex]\frac{-1}{x_0^2} (x - x_0) = \frac{-1}{x_0^2} . \frac{(x - x_0)}{1}[/tex]?

After that I multiply to get [tex]\frac{-1}{x_0^2} (x - x_0) = \frac{-x + x_0}{x_0^2} = \frac{-x}{x_0^2} + \frac{x_0}{x_0^2}[/tex].

Then divide [tex]x_0[/tex] into [tex]x_0^2[/tex] which gives [tex]x_0^{-1}[/tex] which equals [tex]\frac{1}{x_0}[/tex].

The equation I am following misses all the intermediate steps so I want to make sure I am understanding it correctly.

Last edited: