Hi All,(adsbygoogle = window.adsbygoogle || []).push({});

I have a hard time answering the following. I need some help.

Let Z={a,b,c,d,e,f} and let X denote the set of 10 partitions of Z into two sets of three. Label the members of X as follows:

0 abc|def

1 abd|cef

2 abe|cdf

3 abf|cde

4 acd|bef

5 ace|bdf

6 acf|bde

7 ade|bcf

8 adf|bce

9 aef|bcd

Let g->g^ denote the representation of S6=Sym(Z) as permutations of X.

1. By considering (abc)^ and (def)^, show that (S6)^ is 2-transitive on X.

2. How many elements of (S6)^ fix both 0 and 1? Find them. Deduce that (S6)^ is not 3-transitive on X.

Thank you very much. :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Multiply Transitive Groups

**Physics Forums | Science Articles, Homework Help, Discussion**