Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Multivariable Calculus Limits

  1. Sep 18, 2005 #1
    lim of

    cos((x^2 + y^2) - 1)/(x^2 + y^2)

    as (x,y) approaches (0,0)

    I have no clue how to tackle this problem. I tried to find the level set so at least I can have a clue of what the graph looks like, but then, I didn't know how to find the level sets either. If I set c = the equation, I have 2 unknowns so I cannot solve, and its not an obvious graph like a circle or something. On the other hand, I tried l'hopitale but that needs the derivative and what in the world am i taking a derivative in terms of since there are 2 variables?

    I'm very confused. PLEASE HELP! :bugeye:
     
  2. jcsd
  3. Sep 18, 2005 #2
    you have an intermediate form of lahopital's theorey of the form 1/0
    do you know how to do these?
     
  4. Sep 18, 2005 #3

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I think he's missing a parenthesis -- the numerator is supposed to be cos(x²+y²) - 1. (P.S. 1/0 is not indeterminate, and AFAIK it's not L'Hôpital theory)

    eutopia: what techniques have you seen used for similar problems? There is one in particular that makes this problem very simple.


    Are you sure about that?
     
  5. Sep 19, 2005 #4
    For the limit to exist it has to exist regardless of the direction from which you are approaching the point. Parameterize lines passing through the origin and see if you can get that.
     
  6. Sep 19, 2005 #5

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    As you said, the limit has to exist (and be the same value) for any way you approach the origin -- just looking at the lines isn't good enough.
     
  7. Sep 19, 2005 #6

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    "Lines through the origin", suggested by MalleusScientiarum, will help show that a limit does not exist by getting, hopefully, different limits on different lines. But they can't prove that a limit DOES exit (or find it) since even if the limit is the same along all lines, there might be other curves, not lines, passing through the origin that give a different limit.

    The best way to handle ANY limit problem in more than one variable (going to (0,0) or (0,0,0), etc.) is to change to polar (spherical, etc.) coordinates since that way one variable, r (ρ, etc.) measures the distance to (0,0) directly! In this case, that's easy since x and y only appear in x2+ y2= r2.

    The original function,
    [tex]\frac{cos((x^2 + y^2) - 1)}{x^2 + y^2}[/tex]
    becomes
    [tex]\frac{cos(r^2-1)}{r^2}[/tex]
    which clearly goes to infinity as r goes to 0.

    Hurkyls suggested correction,
    [tex]\frac{cos(x^2+y^2)-1}{x^2+y^2}[/tex]
    becomes
    [tex]\frac{cos(r^2)-1}{r^2}[/tex]
    which now has only one variable and can be done by L'Hopital's rule. (The limit is 0.)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Multivariable Calculus Limits
  1. Multivariable Calculus (Replies: 2)

  2. Multivariable Calculus (Replies: 3)

  3. Multivariable limit (Replies: 2)

Loading...