- 1

- 0

a. Write revenue as a multivariable function of the number of people, q, in excess of 50 and the price per person, p.

b.Write a constraint equation for the price in terms of the number of people in excess of 50

c.Maximize the revenue under the contstraint using the method of Lagrange Multipliers.

I just cant figure out b and c.. can anyone lend some help? As far as #A I have found that Revenue = 1700-10q and that when q=85 revenue is maximized.