Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: N is closed?

  1. Mar 23, 2006 #1
    We defined the definition of a closed set to be:

    "[tex]F\subset\mathbb{R}[/tex] is closed if the limit of any convergent sequence in F is an element of F."

    Now we have also defined that a sequence may "converge to infinity". Is infinity considered a point in N?
  2. jcsd
  3. Mar 23, 2006 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    [itex]\pm\infty[/itex] are elements of the extended real numbers, not the real numbers. Converging to infinity only makes sense when working within the extended reals.

    So if you're working over the reals, then "converge to infinity" doesn't make sense, because the reals have no such element. A sequence that would converge to (plus) infinity in [itex]\bar{\mathbb{R}}[/itex] is not a convergent sequence in R.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook