Name this function!

  • #1
CRGreathouse
Science Advisor
Homework Helper
2,820
0
I ran across a function and wondered if it's named. It reminds me of Lambert's W. I quote from my source (van de Lune and Wattel 1969):

where [itex]\xi[/itex] is the positive root of [itex]e^\xi-1=x\xi[/itex]

Here [itex]x[/itex] is a constant for our purposes.

The function is essentially logarithmic in the limit, as is clear from its definition.
 

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,833
964
"Where [itex]\zeta[/itex] is the positive root of [itex]e^{/zeta}- 1= x/zeta[/itex]" doesn't define anything! Surely there was a definition before the "where"!
 
  • #3
Don't know what it's called, but I gave a solution of it elsewhere[sosmath.com] (sorry 'bout the plug for a rival website :wink: ).
 
  • #4
CRGreathouse
Science Advisor
Homework Helper
2,820
0
"Where [itex]\zeta[/itex] is the positive root of [itex]e^{/zeta}- 1= x/zeta[/itex]" doesn't define anything! Surely there was a definition before the "where"!

Huh? First of all, that's not what I wrote; in addition to the typographic difference (I used xi, you used zeta) you divide where I multiply. But it does define a function* -- or rather a family of functions, one for each value of x. The function is [itex]f_x:\mathbb{R}^+\to\mathbb{R}[/itex], defined by

[tex]f_x(z)=\xi \Leftrightarrow e^\xi-1=x\xi[/tex]

Of course this definition doesn't show that the function is single-valued on the reals, nor that it's defined for all positive reals, or the like... that's one reason I'd like to find out if there are 'known properties' of this function.

* And it's a good thing, too, since the thing that comes before the "where" was another function defined using [itex]\xi[/itex].
 
Last edited:
  • #5
CRGreathouse
Science Advisor
Homework Helper
2,820
0
Don't know what it's called, but I gave a solution of it elsewhere[sosmath.com]

OK, so you suggest

[tex]-\xi=\frac1x+W\left(\frac{-\exp(-1/x)}{x}\right)[/tex]

Any thought on which branch to take? The W should be defined on both branches for x > 0.
 
Last edited:
  • #6
CRGreathouse
Science Advisor
Homework Helper
2,820
0
where [itex]\xi[/itex] is the positive root of [itex]e^\xi-1=x\xi[/itex]

Here [itex]x[/itex] is a constant for our purposes.

The function is essentially logarithmic in the limit, as is clear from its definition.

Actually I'm interested in the behavior of the function around small values, maybe 3 to 20. In this neighborhood it's not really logarithmic -- any thoughts on how best to characterize it?
 

Related Threads on Name this function!

Replies
7
Views
899
A
  • Last Post
Replies
4
Views
360
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
4
Views
1K
Replies
2
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
13
Views
3K
Top