Natural Logarithm Laws

  • Thread starter Towk667
  • Start date
17
0
How does
(ln(x))^(1/x)=ln(x^(1/x))?

A friend told me this was a true statement but could'nt prove it. If that isn't true, then how would you find the lim x->0 of (ln(x))^(1/x) using L'Hospital's Rule?
 

HallsofIvy

Science Advisor
Homework Helper
41,709
876
For example, if x= 2, ln(2)= 0.69315, approximately so [itex](ln(2))^{1/2}= 0.83255[/itex]. But [itex]2^{1/2}= 1.41421[/itex] so [itex]ln(2^{1/2})= 0.34657. Not at all the same.
 

HallsofIvy

Science Advisor
Homework Helper
41,709
876
For example, if x= 2, then ln(2)= 0.69315, approximately, and [itex](ln(2))^{1/2}= 0.83255.

But [itex]2^{1/2}= 1.41421[/itex] and so [itex]ln(2^{1/2})= 0.34657. Not at all the same.

As for the entire problem of finding the limit, as x goes to 0, of [itex](ln(x))^{1/x}[/itex], I see a serious difficulty: as soon as x< 1, ln(x)< 0 and fractional powers of negative numbers are not defined.
 
17
0
That's what I thought, but my friend insisted that it was true. I've been rattling my brain for about 2 days on that one, so I decided to ask here. So can you help me with limit I mentioned in my first post? I typed it wrong in the first post its the limit as x approaches infinity not zero. I can see from graphing it that it's going to come out to one, but I don't know how to use L'Hopistal's Rule to solve for it. If I try to evaluate it without changing anything I get something like [tex]\infty0[/tex] which would be one if it isn't indeterminant, I don't remember if it is or isn't. Anyways, I'm supposed to use L'Hosp. Rule and I don't know how to write the limit as a fraction to use L'Hopistal's Rule though.
 

mathman

Science Advisor
7,687
387
General formula: ln(ab)=(b)ln(a)
For your formula: ln(x1/x)=(1/x)ln(x)

As for the L'Hopital rule question, you don't need it, since the expression goes to (-∞), which is ∞, with an ambiguous sign.
 
Last edited:
17
0
General formula: ln(ab)=(b)ln(a)
For your formula: ln(x1/x)=(1/x)ln(x)

As for the L'Hopital rule question, you don't need it, since the expression goes to (-∞), which is ∞, with an ambiguous sign.
The original equation is [ln(x)]^(1/x) not ln(x^(1/x)).
 
607
0
The original equation is [ln(x)]^(1/x) not ln(x^(1/x)).
...and the original equation was incorrect, so mathman gave something correct.
 

Related Threads for: Natural Logarithm Laws

  • Posted
Replies
14
Views
3K
  • Posted
Replies
6
Views
621
  • Posted
Replies
5
Views
518
  • Posted
Replies
8
Views
2K
  • Posted
Replies
3
Views
4K
Replies
16
Views
3K
  • Posted
Replies
8
Views
2K
Replies
2
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top