- 15
- 1
are they equal?
View attachment 88026
are they equal?
Just for the record, I have never seen this notation -- ##^e\log y##. By "never" I mean in the past 55+ years. That's not to say that someone hasn't used it somewhere, but if so, it's certainly not in common usage. The notation ##\log_e y## is rarely used, since ##\ln y## is defined to mean log, base e, of y.The first notation is to be avoided: there are already two notations for the base of a logarithm: ##^e\log y## and ##\log_e y## for ##\ln y## and this looks too much like a third notation for the same, which it is NOT.
I now miss how you DO write ##^4\log 16 = 2## ? With the rarely used notation ?Just for the record, I have never seen this notation -- ##^e\log y##. By "never" I mean in the past 55+ years. That's not to say that someone hasn't used it somewhere, but if so, it's certainly not in common usage. The notation ##\log_e y## is rarely used, since ##\ln y## is defined to mean log, base e, of y.
If someone were to write ##\log^4 (x + 3)##, I would interpret this to mean the same as ##(\log(x + 3))^4## following the usual shorthand as used in powers of trig functions. I would also interpret the log base to be 10, but in some contexts the implied log base could be e or possibly 2, in computer science textbooks.