- #1

- 31

- 0

[tex]\rho\left(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}\right)=-\frac{\partial p}{\partial x}+\mu\frac{\partial^2u}{\partial x^2}[/tex]

Condition of imcompressibility gives

[tex]\frac{\partial u}{\partial x}=0[/tex]

So I have Navier stokes

[tex]\rho\frac{\partial u}{\partial t}=-\frac{\partial p}{\partial x}+\mu\frac{\partial^2u}{\partial x^2}[/tex]

How to find pressure p(x,t)?