Neat summation

3,073
3

Main Question or Discussion Point

Given nonzero whole numbers n, prove

13+23+33+...+n3=(1+2+...n)2

I figured this out numerically, but lack the skills to solve it analytically (no doubt by induction) and could not find it in my table of summations. I'm too old for this to be homework.
 

Answers and Replies

1,703
5
3,073
3
Thanks, ice109. I'm surprised that I've never heard of Faulhaber before. I guess Bernoulli got all the acclaim.

I still don't see a derivation of my finding, however. I thought in the case I presented that p=3 on one side of the equation, and p=2 on the other, as opposed to p=3 for both sides of Faulhaber's formula.

K.J.Healey seems to have what I seek, including a proof of Nicomachus's theorem.
 
1,703
5
i like that one better

what the hell? every n^3 is the sum of n consecutive odd numbers? wheatstone's proof seems to imply that
 
Last edited:
Gib Z
Homework Helper
3,344
4
If one knows the closed forms for all cases p< n, then the closed form for p=n can be derived as such:

Set up a table into two columns, LHS and RHS of the following equation;

[tex](x+1)^{n+1} - x^{n+1} = (^{n+1}C_1)x^n + (^{n+1}C_2)x^{n-1} ...+1 [/tex].

Sum this expression for k=1, 2,3,4....m. The LHS is a telescoping series. The RHS is the sum of cases p=0, 1, 2, 3... n. Replace every series with its known closed form. Then isolate the p=n case onto one side of the equation, and simplify.

Since we only need this for up to p=3, it shouldn't be very hard.
 

Related Threads for: Neat summation

  • Last Post
Replies
3
Views
2K
Replies
4
Views
5K
Replies
3
Views
1K
  • Last Post
Replies
1
Views
650
Replies
6
Views
1K
  • Last Post
Replies
5
Views
589
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
1
Views
2K
Top