1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Need help checking integration answers

  1. Mar 20, 2005 #1
    I just want someone to check since I only learnt this 'Integration using partial fractions' method today and I'm not sure I got it right...

    First question:
    [tex]\int \frac {dx}{x^2-a^2}[/tex] = [tex]\int \frac {dx}{(x+a)(x-a)}[/tex]

    let [tex] \frac {1}{(x+a)(x-a)} \equiv \frac {A}{x+a} + \frac {B}{x-a}[/tex]

    [tex]\equiv \frac {A(x-a)+B(x+a)}{(x+a)(x-a)}[/tex]

    so [tex] 1 \equiv (A+B)x+a(-A+B)[/tex]

    equate coefficients to find:
    [tex]B=\frac{1}{2a}[/tex] and [tex]A=\frac{-1}{2a}[/tex]

    substituting A and B back:
    [tex]\int \frac {dx}{(x+a)(x-a)}[/tex] = -[tex]\int \frac {x+a}{2a} dx + \int \frac {x-a}{2a} dx[/tex]

    I took the 1/2a out and integrated and got:
    [tex]\frac {-1}{2a} \frac {x^2}{2} + ax + \frac {1}{2a} \frac {x^2}{2} - ax + c[/tex]

    which simplifies to c :bugeye: which looks extremely strange to me...

    Second question:
    [tex]\int \frac {dx}{16x^4-1} = \int \frac {dx}{(4x^2+1)(2x+1)(2x-1)}[/tex]

    let [tex]\frac {1}{16x^4-1} \equiv \frac {Ax+B}{4x^2+1} + \frac {C}{2x+1} + \frac {D}{2x-1}[/tex]

    [tex]\equiv \frac {(Ax+B)(4x^2-1)+C(2x-1)(4x^2+1)+D(2x+1)(4x^2+1)}{16x^4-1}[/tex]

    [tex]1 \equiv x^3(4A+8C+8D)+x^2(4B-4C+4D)+x(-A+2C+2D)+D-C-B[/tex]

    equating coffecients to get:

    I then found:
    A=0, B=-1/2, C=-1/4 and D=1/4

    substituting back into the integral:
    [tex]\int \frac {dx}{16x^4-1} = \frac {-1}{2} \int 4x^2+1 dx - \frac {1}{4} \int 2x+1 dx + \frac {1}{4} \int 2x+1[/tex]
    = [tex]\frac{-4x^3}{6}+x-\frac{x^2}{4}+x+\frac{x^2}{4}-x+c[/tex]
    = [tex]\frac {-2x^3}{3}+x+c[/tex]

    Last question:
    [tex]\int \frac {2}{(x^2+x+2)(x+1)}dx[/tex]

    let [tex]\frac {2}{(x^2+x+2)(x+1)} \equiv \frac {Ax+B}{(x+\frac {1}{2})^2 + \frac {7}{4}} + \frac {C}{x+1}[/tex]

    [tex]\equiv \frac {(Ax+B)(x+1)+C((x+\frac {1}{2})^2+\frac {7}{4})}{(x^2+x+2)(x+1)}[/tex]

    [tex]2\equiv x^2(A+C)+x(A+B+C)+B+2C[/tex]

    equating coefficients:

    so: A=-1, B=0, C=1

    putting it back into the integral:
    [tex]\int \frac {2}{(x^2+x+2)(x+1)}dx = -\int \frac {x}{(x+\frac {1}{2})^2+\frac {7}{4}} dx + \int \frac {1}{x+1} dx[/tex]

    I integrated the first part using the 'Integration by parts' method and then simplified to get:

    [tex]\frac {-x}{\sqrt {\frac{7}{4}}} \arctan (\frac {x+\frac{1}{2}}{\sqrt {7}}) - \tan (\frac {2x+1}{\sqrt{7}}) + ln(x+1) + c[/tex]

    Thanks in advance :)
  2. jcsd
  3. Mar 21, 2005 #2
    For #1 and #2, I want you to look very hard at the part where you subbed A and B back in and see if you see anything wrong (are you sure all those functions of x should be in the numerator?).

    I'll look at 3 in a minute~
  4. Mar 21, 2005 #3
    3 looks fine from the work you have down, but your answer is wrong. Check over your integration by parts~
  5. Mar 21, 2005 #4

    is #1
    [tex]\frac {-1}{2a} ln(2ax+2a^2) + \frac {1}{2a} ln(2ax-2a^2) + c

    for #2
    [tex]\frac {-1}{2} \int \frac {1}{4x^2+1} dx - \frac {1}{8}ln(2x+1) + \frac {1}{8}ln(2x+1)[/tex]
    I don't know how to integrate [tex]\int \frac {1}{4x^2+1} dx[/tex] ?

    #3...I got to:
    [tex]\frac {-x}{2(x^2+x+2)} - \int \frac {1}{2x^4+8x^2+8x+4}[/tex]
    but I don't know what to do after that...
  6. Mar 21, 2005 #5
    sorry, sorry, I mucked up the reply....

    it's supposed to be...


    is #1
    [tex]\frac {-1}{2a} ln(2ax+2a^2) + \frac {1}{2a} ln(2ax-2a^2) + c[/tex]

    for #2
    [tex]\frac {-1}{2} \int \frac {1}{4x^2+1} dx - \frac {1}{8}ln(2x+1) + \frac {1}{8}ln(2x+1)[/tex]
    I don't know how to integrate [tex]\int \frac {1}{4x^2+1} dx[/tex] though?

    #3...I got to:
    [tex]\frac {-x}{2(x^2+x+2)} - \int \frac {1}{2x^4+8x^2+8x+4}[/tex]
    but I don't know what to do after that...
  7. Mar 21, 2005 #6


    User Avatar
    Science Advisor
    Homework Helper

    [tex] \int \frac{dx}{4x^{2}+1}=\frac{1}{2}\int \frac{d(2x)}{(2x)^{2}+1}=\frac{1}{2}\arctan 2x +C [/tex]

  8. Mar 21, 2005 #7
    so #2 becomes
    [tex]\frac {-1}{4} \arctan(2x) - \frac {1}{8}ln(2x+1) + \frac {1}{8}ln(2x+1) + c[/tex] ?
  9. Mar 21, 2005 #8
    #1 looks right. You can simplify it to

    [tex]\frac{1}{2a} \ln \left(\frac{x-a}{x+a} \right) + C[/tex]

    too. Do you see how?

    #2 is perfect.

    For 3, note that

    [tex]\int \frac{2}{(x^2+x+2)(x+1)} \ dx = -\int \frac{x}{\left(x+\frac{1}{2}\right)^2 + \frac{7}{4}} \ dx + \int \frac{dx}{x+1}[/tex]

    [tex] = -\int \frac{x + \frac{1}{4}}{\left(x + \frac{1}{2}\right)^2 + \frac{7}{4}} \ dx + \int \frac{\frac{1}{4}}{\left(x + \frac{1}{2}\right)^2 + \frac{7}{4}} \ dx + \ln (x+1)[/tex]

    [tex] = -\int \frac{x + \frac{1}{4}}{\left(x + \frac{1}{2}\right)^2 + \frac{7}{4}} \ dx + \frac{1}{2\sqrt{7}}\arctan \left( \frac{2x+1}{\sqrt{7}} \right) + \ln (x+1)[/tex]

    and see if the substitution [itex] u = (x+ 1/2)^2[/itex] will help to evaluate the first integral.
    Last edited: Mar 21, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Need help checking integration answers