- #1

- 10

- 0

## Homework Statement

Use spherical coordinates to find the volume of the solid bounded above by the sphere with radius 4 and below by the cone z=(x^2 + y^2)^(1/2).

## Homework Equations

All general spherical conversions

Cone should be [tex]\phi[/tex]=[tex]\pi[/tex]/4

## The Attempt at a Solution

So far I think the triple integral setup is

0[tex]\leq[/tex][tex]\rho[/tex][tex]\leq[/tex]4

0[tex]\leq[/tex][tex]\theta[/tex][tex]\leq[/tex]2[tex]\pi[/tex]

0<[tex]\phi[/tex][tex]\leq[/tex][tex]\pi[/tex]/4

My question is, for dV, do I need anything more than ([tex]\rho[/tex]^2)sin[tex]\phi[/tex]d[tex]\rho[/tex]d[tex]\theta[/tex]d[tex]\phi[/tex]? Or do I need to figure out the intersection and volume that describes the area bounded above by the sphere and below the cone? Or do I already have that with my limits and standard dV question? (if I am correct so far). Any help would be great. Thanks.