Need help with Fourier transformation

  • #1
ultimateguy
125
1

Homework Statement


Solve Poisson's equation, [tex]\bigtriangledown^2 \psi(\vec{r}) = \frac{- \rho (\vec{r})}{\epsilon_0}[/tex], by the following sequence of operations:

a) Take the Fourier transform of both sides of this equation. Solve for the Fourier transform of [tex]\psi(\vec{r})[/tex].
b) Carry out the inverse transform by using a three-dimensional analog of the convolution theorem.

Homework Equations


Fourier transformation


The Attempt at a Solution



I'm working on part a. I understand how to do a Fourier transform, but not so much in 3D. This is my work, I just want to make sure that I've done part a correctly so that I can move on to part b.

[tex]\bigtriangledown^2 \psi(\vec{r}) = \frac{- \rho (\vec{r})}{\epsilon_0}[/tex]
[tex]\frac{-\vec{k}^2}{\sqrt{2\pi}} \int^\infty_{-\infty} \psi(\vec{r}) e^{i \vec{k} \cdot \vec{r}} d\vec{r} = \frac{-1}{\epsilon_0 \sqrt{2\pi}} \int^\infty_{-\infty} \rho (\vec{r}) e^{i \vec{k} \cdot \vec{r}} d\vec{r}[/tex]
[tex]-\vec{k}^2 \Psi(\vec{k}) = \frac{-1}{\epsilon_0} P(\vec{k})[/tex]
[tex] \Psi (\vec{k}) = \frac{1}{\epsilon_0 \vec{k}^2} P (\vec{k})[/tex]
 
Last edited:

Answers and Replies

  • #2
mjsd
Homework Helper
726
3
seems ok.......
 

Suggested for: Need help with Fourier transformation

Replies
11
Views
374
Replies
5
Views
644
Replies
6
Views
601
  • Last Post
Replies
2
Views
643
Replies
16
Views
1K
Replies
0
Views
465
Replies
4
Views
785
Replies
0
Views
295
Replies
1
Views
118
Top