- #1

- 1,868

- 0

## Main Question or Discussion Point

Hi

Say I have a real quantity given by

[tex]

x(t) = \int_{ - \infty }^\infty {\tilde x(\omega )e^{ - i\omega t} d\omega }

[/tex]

Now I complex conjugate it (remember it is real)

[tex]

x(t) = \int_{ - \infty }^\infty {\tilde x^* (\omega )e^{ + i\omega t} d\omega }

[/tex]

How is it that I from this can

[tex]

{\tilde x^* (\omega )} = {\tilde x(-\omega )}

[/tex]

?

Best,

Niles.

Say I have a real quantity given by

[tex]

x(t) = \int_{ - \infty }^\infty {\tilde x(\omega )e^{ - i\omega t} d\omega }

[/tex]

Now I complex conjugate it (remember it is real)

[tex]

x(t) = \int_{ - \infty }^\infty {\tilde x^* (\omega )e^{ + i\omega t} d\omega }

[/tex]

How is it that I from this can

**conclude**that we must have the relation[tex]

{\tilde x^* (\omega )} = {\tilde x(-\omega )}

[/tex]

?

Best,

Niles.