Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Negative probabilities in QFT

  1. Sep 21, 2015 #1
    Is there something wrong with negative probabilities per se? I don't what to hear that they are "unphysical" because it is not clear what reality is. Can negative probabilities (or probabilities > 1) be somehow consistent with macroscopic realism => not causing any macroscopic weirdness (no matter how weird it is in quantum world)
     
  2. jcsd
  3. Sep 21, 2015 #2
    I'm not sure if the idea of a negative probability even makes logical sense.
    A probability of zero means that whatever the subject of discussion is has no possibility to happen at all.
    How can we sensibly talk of something happening which is less likely than being impossible?
     
  4. Sep 21, 2015 #3
    As you know, only in some cases particles are detected directly based on their tracks or based on calculations of a some specific run. Very often we can't point to an exact run where particle had manifested. Good example are resonances. Such cases could be compatible with negative probabilities.
     
  5. Sep 21, 2015 #4

    mathman

    User Avatar
    Science Advisor
    Gold Member

    Probability by definition must be in the range [0,1]. If the quantity you are talking about is negative or > 1, then it is not a probability. The physics should tell you what it is.
     
  6. Sep 21, 2015 #5

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    You don't get to ask a question and decide the answer. They are unphysical. Indeed, I challenge you to post any (correct, obviously) calculation of a physical probability that comes out negative.
     
  7. Sep 21, 2015 #6
    How does one even obtain a negative probability using Bohr's interpretation of the state vector?
     
  8. Sep 21, 2015 #7

    atyy

    User Avatar
    Science Advisor

  9. Sep 21, 2015 #8

    kith

    User Avatar
    Science Advisor

    Feynman wrote a famous article about negative probabilities. John Baez talks about it and some other approaches in a blog post.

    The bottom line seems to be that negative probabilities may be interesting and useful auxillary quantities. Of course, they can't occur as probabilities for physical outcomes.
     
  10. Sep 21, 2015 #9

    bhobba

    Staff: Mentor

    Negative probabilities contradict the Kolmogorov axioms and are not allowed - it by definition is a positive measure.

    When they appeareed in relativistic QM it showed it was sick. Later it was shown when negative probabilities appeared in for example a probability current it wasn't the probability that turned negative, which of course it cant, but that something else like charge changed sign and was the first indication of the existence antiparticles.

    I remember discussing negative probabilities with my statistical modelling professor who for some reason thought QM allowed them. I had to explain it didn't. I had a collection of essays at the time that included Feynman's famous essay on it and gave him the book. He assured me they are useful in certain more advanced areas of probability where you allow them to go infinitesimally negative then take a limit later - but its more of a trick than actually allowing it.

    Thanks
    Bill
     
  11. Sep 22, 2015 #10

    Stephen Tashi

    User Avatar
    Science Advisor

    As a technicality, we must distinguish between "a probability" and "the value of a probability density function". A given value of a probability density function need not be a probability. Furthermore, there is no formalization in the Kolmogorov axioms of the concept that events that have probabilities can "actually happen".
     
  12. Sep 22, 2015 #11

    Demystifier

    User Avatar
    Science Advisor

    Probabilities are useful in physics because you can measure them, provided that you adopt the frequency interpretation of probability. Other interpretations of probability also exist, but those cannot be directly measured.

    Negative probability cannot be interpreted in terms of frequency. So whatever the interpretation of negative probability is, it cannot directly be measured. Therefore it is not so much useful in physics. Perhaps it can be useful as a mathematical tool in intermediate calculations, but not more than that.
     
  13. Sep 22, 2015 #12
    This is surely correct, but I think not really relevant for negative probabilities. A negative probability density will be able to produce a negative probability, if it is negative on any set of finite measure. If the set is of measure zero then there is an equivalent probability density without negative values on that set. So the non-negativity is sort of strict for the probability density too. This is different from for example the requirement that probabilities be less than or equal to 1, which doesn't hold for densities.

    That said, there are negative "pseudo probability densities" if you try to construct a classical phase space from the quantum state space. The Wigner-Weyl function of a state gives a real density that is not necessarily non-negative as a function of the positions and momenta of the system. Integrating over that density will also violate non-negativity in general. However, this density function can still be interpreted as a probability density if you restrict the way of getting probabilities out of it by integration. Instead of directly integrating, we first multiply point-wise with a Wigner function of another state (or of any non-negative Hermitian operator in fact) and then integrate over the whole phase space. This is guaranteed to give a non-negative result and we can interpret it as the probability of finding the second state in the first.

    So this quantum "phase space" representation is a very good example of how to utilise something potentially negative as a density function for probabilities without getting negative probabilities. But only with a non-standard definition of measures on that density.

    Cheers,

    Jazz
     
    Last edited: Sep 22, 2015
  14. Sep 22, 2015 #13
    In the title of this thread you refer to QFT. Where exactly in QFT do you think you encounter negative probabilities? Negative probabilities arose in relativistic quantum mechanics before the idea of field quantisation was established. And at that time those negative probabilities were pretty much a deal breaker that led to the search of better descriptions.

    Cheers,

    Jazz
     
  15. Sep 22, 2015 #14
    What's about the following example. Particle-resonance is detected by observing a positive spike, a higher frequency for some energy. If such spike is observed we conclude there is a particle with very short lifetime and with positive probability of creation. What if probability is negative? Then we should detect a negative spike, some energy will be avoided. As such hypothetical particle has extremely short lifetime, it does not cause any macroscopic weirdness. Just a model.
     
  16. Sep 22, 2015 #15

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    As all other posters have pointed out, negative probabilities are a contractio in adjecto. They don't make sense in mathematics and thus also not in physics. The good news is that there are no negative probabilities in QFT; only wrong attempts to quantize gauge fields. So you don't even need to think about them. Either you use the path-integral formalism with the Faddeev-Popov technique (this you should do first) and/or the covariant operator-quantization formalism. For the first topic I recommend

    Bailin, Love, Gauge Theories

    and for the second the review paper by Kugo and Ojima:

    Taichiro Kugo and Izumi Ojima. Local covariant operator formalism of nonabelian gauge theories and quark confinement problem. Prog. Theor. Phys. Suppl., 66:1 (1979)
    http://dx.doi.org/10.1143/PTPS.66.1
     
  17. Sep 22, 2015 #16

    Demystifier

    User Avatar
    Science Advisor

    A typical spike you are talking about looks like this:
    https://qph.is.quoracdn.net/main-qimg-ac61f5ba8ae784a7bc31952ca51caf2f?convert_to_webp=true [Broken]
    You have a large background and a small spike slightly above the background. In principle you may also have a spike below the background, but the value (on the y-axis) cannot be negative. You cannot have less than zero number of events at a given energy. In other words, the probability of given energy cannot be less than zero.
     
    Last edited by a moderator: May 7, 2017
  18. Sep 22, 2015 #17
    By negative spike I mean it goes below the green line.
     
  19. Sep 22, 2015 #18

    Demystifier

    User Avatar
    Science Advisor

    I know, the green line is the background I was talking about. As you can see, below the green line the probability is still positive.
     
  20. Sep 22, 2015 #19

    martinbn

    User Avatar
    Science Advisor

    They can be interpreted as less often than never. :wink:
     
  21. Sep 22, 2015 #20

    Demystifier

    User Avatar
    Science Advisor

    I am more than convinced (more than 100%) that it doesn't make sense. :wink:

    Which leads us to an interesting question: Does Bayesian interpretation of probability allow probabilities larger than 1 or smaller than 0?
    (Hint: of course not.)
     
    Last edited: Sep 22, 2015
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Negative probabilities in QFT
  1. Negative Probabilities (Replies: 37)

  2. QFT with negative mass (Replies: 3)

Loading...