Let [itex]z : \mathbb{N}^2 \to \mathbb{C}[/itex]. Suppose that:(adsbygoogle = window.adsbygoogle || []).push({});

1) for all natural n, [itex]\sum _{j \in \mathbb{N}}z(n,j)[/itex] converges absolutely.

2) for all natural j, [itex]\sum _{n \in \mathbb{N}}z(n,j)[/itex] converges absolutely.

3) [itex]\sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely.

Can we conclude that

4) [itex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely as well, with

[tex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) = \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Nested series

Loading...

Similar Threads for Nested series |
---|

I Divergent series question |

I Help with simplifying series of hyperbolic integrals |

I Taylor series |

**Physics Forums | Science Articles, Homework Help, Discussion**