Neutrino Mixing Matrix

  • #1
SuperStringboy
74
0
Please look at equation 3 and 4 of this paper

http://arxiv.org/abs/0707.2481v1

I am facing problem to write the matrix Us

Can anybody help me to write the complete matrix?
 

Answers and Replies

  • #2
Hepth
Gold Member
449
39
I think I understand how to write it, but I feel like I'm getting some different minus signs. Basically you want the SO(5) rotation group, and matrices for one direction about another (plane, or whatever its called).

If you look at http://reference.wolfram.com/mathematica/ref/RotationMatrix.html
Under Applications, they show how to generate the matrix form for a rotation in SO[N]. Then you take these and multiply them how they have it in the paper, order obviously matters.

I do:
Code:
SO[n_] := Map[RotationMatrix[\[Theta], #] &,    Subsets[Table[UnitVector[n, i], {i, n}], {2}]];
SO5MAP = Map[ MatrixForm, SO[5]];
\[Theta][a_, b_] := Subscript[\[CapitalTheta], a, b]
R12 = SO5MAP[[1]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 2]};
R13 = SO5MAP[[2]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 3]};
R23 = SO5MAP[[5]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 3]};
R14 = SO5MAP[[3]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 4]};
R15 = SO5MAP[[4]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 5]};
R24 = SO5MAP[[6]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 4]};
R25 = SO5MAP[[7]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 5]};
R34 = SO5MAP[[8]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 4]};
R35 = SO5MAP[[9]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 5]};
R45 = SO5MAP[[10]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      4, 5]};
ROT = R45.(R35.(R34.(R25.(R24.(R15.(R14.(R23.(R13.R12))))))));
ROT /. {Cos[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[c, a, b],     Sin[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[s, a, b]} //   Simplify // MatrixForm

The output looks like

[tex]
\left(
\begin{array}{ccccc}
c_{1,2} c_{1,3} c_{1,4} c_{1,5} & -c_{1,3} c_{1,4} c_{1,5} s_{1,2} & -c_{1,4} c_{1,5} s_{1,3} & -c_{1,5} s_{1,4} & -s_{1,5} \\
c_{2,3} c_{2,4} c_{2,5} s_{1,2}-c_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) & c_{1,2} c_{2,3} c_{2,4} c_{2,5}+s_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) & -c_{1,3} c_{2,4} c_{2,5} s_{2,3}+s_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right) & -c_{1,4} c_{2,5} s_{2,4}+s_{1,4} s_{1,5} s_{2,5} & -c_{1,5} s_{2,5} \\
c_{3,5} \left(s_{1,2} \left(c_{3,4} s_{2,3}-c_{2,3} s_{2,4} s_{3,4}\right)+c_{1,2} \left(c_{2,3} c_{3,4} s_{1,3}+\left(-c_{1,3} c_{2,4} s_{1,4}+s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}\right)\right)-\left(c_{1,2} c_{1,3} c_{1,4} c_{2,5} s_{1,5}+\left(c_{2,3} c_{2,4} s_{1,2}-c_{1,2} \left(c_{2,4} s_{1,3} s_{2,3}+c_{1,3} s_{1,4} s_{2,4}\right)\right) s_{2,5}\right) s_{3,5} & c_{3,5} \left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right)-\left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right) s_{3,5} & s_{1,3} \left(c_{2,4} c_{3,5} s_{1,4} s_{3,4}+\left(c_{1,4} c_{2,5} s_{1,5}-s_{1,4} s_{2,4} s_{2,5}\right) s_{3,5}\right)+c_{1,3} \left(c_{2,3} c_{3,4} c_{3,5}+s_{2,3} \left(c_{3,5} s_{2,4} s_{3,4}+c_{2,4} s_{2,5} s_{3,5}\right)\right) & c_{2,5} s_{1,4} s_{1,5} s_{3,5}+c_{1,4} \left(-c_{2,4} c_{3,5} s_{3,4}+s_{2,4} s_{2,5} s_{3,5}\right) & -c_{1,5} c_{2,5} s_{3,5} \\
c_{4,5} \left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right)-\left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right) s_{4,5} & c_{4,5} \left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right)-\left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} & c_{4,5} \left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right)-\left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} & c_{2,5} c_{3,5} s_{1,4} s_{1,5} s_{4,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5} s_{4,5}+c_{2,4} \left(c_{3,4} c_{4,5}+s_{3,4} s_{3,5} s_{4,5}\right)\right) & -c_{1,5} c_{2,5} c_{3,5} s_{4,5} \\
c_{4,5} \left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right)+\left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right) s_{4,5} & c_{4,5} \left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right) s_{4,5} & c_{4,5} \left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right) s_{4,5} & -c_{4,5} \left(c_{2,5} c_{3,5} s_{1,4} s_{1,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,4} c_{2,4} c_{3,4} s_{4,5} & c_{1,5} c_{2,5} c_{3,5} c_{4,5}
\end{array}
\right)
[/tex]

again, im not sure where there is a sign difference.
 
  • #3
SuperStringboy
74
0
Thanks a loooooooooooot ! :)
 
  • #4
Hepth
Gold Member
449
39
Ah actually what you need to do is take the transpose of each of those matrices, then you get whats right:

R12 = Transpose[SO5MAP[[1]]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][1, 2]};

The transpose is what you want, and then apply those in order. The signs will be correct then.
 
  • #5
SuperStringboy
74
0
Thanks again. I realized that too. So did not check recently.
 

Suggested for: Neutrino Mixing Matrix

Replies
16
Views
6K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
3K
Replies
1
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
1K
Replies
14
Views
6K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
5
Views
2K
Top