Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Neutron Fusion

  1. Oct 11, 2007 #1
    It never occured to me until now why instead of using two charged protons to fuse together, rather fuse neutrons to a hydrogen nucleus.

    Yes, it seems like cheating the system and therefore thats why ive not heard about this before, but what is the exact mechanism that prevents this from occuring? Neutrons share the strong nuclear force just as much as the protons, and considering theres at least one proton, shouldnt it be possible to fuse 1-2 neutrons to it?
     
  2. jcsd
  3. Oct 11, 2007 #2

    Astronuc

    User Avatar

    Staff: Mentor

    On the other hand, while we observe a deuteron (pn), we do not observe a (pp) particle, which we attribute to the very strong Coulomb repulsive force, but we also do not observe (nn), which would not be subject to the Coulomb force. Nature does not seem to favor n-fusion - at least not in our part of the universe.
     
  4. Oct 11, 2007 #3

    vanesch

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    This is perfectly possible, and is actually a pain in most applications. Only, one doesn't call it "neutron-hydrogen fusion" but rather: neutron capture by hydrogen. It does liberate some energy (in the form of gamma radiation), of the order of 2.2 MeV if I remember well. The question is: where do you get the free neutrons from ?

    The H + n -> D reaction has a non-neglegible probability, and is actually the reason why one cannot have nuclear power reactors with light water and natural uranium.
    The reaction D + n -> T is much less probable (but does happen!) and is the reason why heavy water reactors CAN(DU) work with natural uranium.

    This makes me think that nobody has got it ever in his (sick) mind to try to make a tritium-water reactor...
     
  5. Oct 12, 2007 #4
    I dont understand why you wouldnt want the H + n -> D reaction in nuclear reactors.. more energy is not better?
     
  6. Oct 12, 2007 #5

    Astronuc

    User Avatar

    Staff: Mentor

    In a fission reactor (LWR), the H + n -> D reaction does occur, and so does the D + n -> T reaction, but at a low rate. The problem with tritium is the radioactivity which one would like to minimize.

    The H + n reaction is not a primary reaction in an LWR. It only produces ~2 MeV as opposed to ~200 MeV per fission of U-235 or Pu-239 which are desirable reactions in an LWR.
     
  7. Oct 13, 2007 #6

    vanesch

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It happens of course, a little bit. The reason I stated that was that for natural uranium, the neutron balance is extremely tight. You only have about exactly the right number of neutrons to keep the chain reaction going (meaning, that 1 neutron produced in a fission will on average give rise to 1 other fission), and to achieve that, you have to slow down the neutrons which are produced in fission at high energy to low thermal energies WITHOUT LOOSING THEM. Water can slow them down, but the reaction H + n -> D makes that one also looses some, and just too many are lost to be able to sustain a chain reaction.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?