# Non-locality and relativity

It is my understanding (perhaps I am wrong) that relativity implies that all frames of reference are equal. For example, if there are two uniformly (no acceleration ) moving objects ( and no others, an empty universe) then one can say object "A" is moving and "B" is still. It is equally true to say that "B" is moving and "A" is still.
A photon is a uniformly moving object. Therefore one can say it is still and the universe is rushing past it. For the photon the universe has zero volume, no distance. To me this fits in with QM's non-locality.
Physics is not my area of expertise, so be kind!

PeterDonis
Mentor
A photon is a uniformly moving object.

No, it isn't; at least, not in the sense required here. The term "uniformly moving" is misleading in this respect; it seems to mean "unaccelerated", which a photon is; but it really means (i.e., the math that underlies these English words really means) "unaccelerated, and moving slower than the speed of light". Things moving at the speed of light are fundamentally different, in relativity, from things that move slower than light. There is a forum FAQ on this:

phinds
Gold Member
2021 Award
It is my understanding (perhaps I am wrong) that relativity implies that all frames of reference are equal. For example, if there are two uniformly (no acceleration ) moving objects ( and no others, an empty universe) then one can say object "A" is moving and "B" is still. It is equally true to say that "B" is moving and "A" is still.
A photon is a uniformly moving object. Therefore one can say it is still and the universe is rushing past it. For the photon the universe has zero volume, no distance. To me this fits in with QM's non-locality.
Physics is not my area of expertise, so be kind!

You are making the completely understandable and very common beginners mistake of thinking that you can assign an IRF (Inertial Reference Frame) to a photon, but you can't. The math gives physically impossible answers when you try to do that so it's considered a meaningless concept.

Nugatory
Mentor
wittgenstein;4854205 one can say [a photon said:
is still and the universe is rushing past it.

You cannot. The problem is that there is no frame in which light travels at any speed other than ##c##. We have a FAQ for this question: https://www.physicsforums.com/showthread.php?t=511170

ghwellsjr
Gold Member
It is my understanding (perhaps I am wrong) that relativity implies that all frames of reference are equal.
More precisely, all Inertial Reference Frames (IRF's) are equally valid and part of the definition of an IRF is that light travels at c in it.

For example, if there are two uniformly (no acceleration ) moving objects ( and no others, an empty universe) then one can say object "A" is moving and "B" is still.
More precisely, object "A" is moving according to a particular IRF and "B" is at rest in the same IRF.

It is equally true to say that "B" is moving and "A" is still.
More precisely, object "B" is moving according to a different IRF and "A" is at rest in that IRF.

A photon is a uniformly moving object.
As I said before, light is defined to move at c in each and every IRF.

Therefore one can say it is still...
No, you can't say that light is at rest in any IRF. As I said before, light is defined to move at c in each and every IRF so you can never say it is still in an IRF.

...and the universe is rushing past it.
There are IRF's where the universe is rushing at near the speed of light but not including the speed of light.

For the photon the universe has zero volume, no distance. To me this fits in with QM's non-locality.
Physics is not my area of expertise, so be kind!
I hope I have been kind.

Thanks for your answers. Why is the speed of light 186282 mps? I know that that speed has been empirically validated. What I am asking, is why 186282 mps is so special. If photons traveled at 186181 mps would that mean that the Lorenz transformation equations would yield different results? If photons did not exist would 186282 mps still give accurate results via the Lorenz equations? Why is 186282 mps the exact speed required to get accurate results (of relativistic effects, such as time dilation etc) from the Lorenz equations?

Last edited:
Nugatory
Mentor
Thanks for your answers. Why is the speed of light 186282 mps? I know that that speed has been empirically validated. What I am asking, is why 186282 mps is so special. If photons traveled at 186181 mps would that mean that the Lorenz transformation equations would yield different results? If photons did not exist would 186282 mps still give accurate results via the Lorenz equations? Why is 186282 mps the exact speed required to get accurate results (of relativistic effects, such as time dilation etc) from the Lorenz equations?

If the speed of light were something other than 186282 m/s, then that different speed is the constant that would appear in the Lorentz transforms. The transforms are derived from the assumption that the speed of light, whatever it is, is the same in all frames.

As for why that speed is what it is? Light is electromagnetic waves, and the speed at which these waves propagate is determined by and can be calculated from the laws of electricity and magnetism which James Maxwell discovered in 1861 (google for "Maxwell's equations").

[as an aside.... except when you are studying the quantum mechanical properties of light, you should avoid thinking in terms of photons. They aren't what you think they are].

ghwellsjr
Gold Member
Thanks for your answers. Why is the speed of light 186282 mps? I know that that speed has been empirically validated. What I am asking, is why 186282 mps is so special. If photons traveled at 186181 mps would that mean that the Lorenz transformation equations would yield different results? If photons did not exist would 186282 mps still give accurate results via the Lorenz equations? Why is 186282 mps the exact speed required to get accurate results (of relativistic effects, such as time dilation etc) from the Lorenz equations?
Actually, 186282 mps is not the exact speed of light. It's more like 186282.397051221 mps but even that is not exact. The exact speed of light is 299792458 meters per second. You may be wondering how the exact speed of light came out to be an integer. Well, that's not a measured value or an empirically validated value, that's a defined value and it was defined to be that value before it was possible to validate it. It could have been defined to be some other value. But now we define the meter by how far light travels during a certain interval of time. So if some other value were used, it would change the physical length of what we call a meter.

I'm sure if scientists could rule the world and start over with a more consistent set of units, they probably would have defined the exact value of the speed of light to be some power of ten and use another unit of length more closely to a foot. In a lot of my diagrams I use the speed of light to be 1 foot per nanosecond which is close but not exact to the defined value but good enough to make the distance and time be in terms that most people can relate to. Can anyone relate to how far a light-second is?

PeroK
Homework Helper
Gold Member
2021 Award
Can anyone relate to how far a light-second is?

It's most of the way to or from the moon! Which is about 1.3 light-seconds away.

Nugatory
Mentor
It's most of the way to or from the moon! Which is about 1.3 light-seconds away.

In other words.... Not the tape measure that I want to be using to frame a house, or build a road, or just about anything else that I might need to measure here on earth.

(This is, of course, the point that ghwellsjr was making - I'm pretty sure that was a rhetorical question).

ghwellsjr
Gold Member
It's most of the way to or from the moon! Which is about 1.3 light-seconds away.
I'll remember that next time on the way to or from the moon!

Off the top of your head, can you say approximately how far away the moon is in feet?

PeroK
Homework Helper
Gold Member
2021 Award
I'll remember that next time on the way to or from the moon!

Off the top of your head, can you say approximately how far away the moon is in feet?

I can picture light travelling to the moon in 1.3 seconds. I can't picture light travelling from my heel to my toe in 1 nanosecond!

ghwellsjr
Gold Member

If you know that light travels 1 foot per nanosecond then it's pretty easy to determine that if it takes 1.3 seconds for the light to get from the earth to the moon, then the moon is 1.3 billion feet away from the earth.

I can picture light travelling to the moon in 1.3 seconds. I can't picture light travelling from my heel to my toe in 1 nanosecond!
With our electronics instruments capable of measuring sub nanosecond intervals, it's easy for me to picture an experiment that shows light taking 1 nanosecond to propagate 1 foot.

Anyway, this is all just a bunch of side track just for fun.

Nugatory
Mentor
Anyway, this is all just a bunch of side track just for fun.

and we've just hijacked wittgenstein's thread... So let's give it back to him now

PeroK
Homework Helper
Gold Member
2021 Award
Yes, so to say something constructive re the OP. If you think classically, you would imagine that distance and time are the fundamentals of the universe and speed would be derived from that. But, as it turns out, the speed of electro-magnetic radiation (which can propagate itself through free, empty space) is fundamental to the universe, and time and distance are, in a way, derived from that.

So, the speed of light itself (however you measure it, whatever units you use or how fast it actually is) is not the point. It's that the speed of light is a fundamental property of our universe and, in a sense, trumps our classical notions of time and distance.

I was not precise enough in my question (post 6). I meant to ask,
1. Why is 186282 mps the only number that yields accurate results in the Lorenz equations and/or E=MC2?
2. If any number works (depending on the speed of light) then if light speed is 5 mph, I am 6 feet tall and am going 4/5 of 5 mph then I will be 3.6 feet tall. That does not seem right! *
So 186282 mps is more than just how fast light travels.
Why does light travel at the only speed (186282 mps) that works in the equations?
* If that is true, ( that light's distance per second is arbitrary and not linked to another physical principle ) how does the speed of a photon influence how tall I will be? If I am in a totaly dark part of the universe (no light) how can a distant photon make me smaller when I am going faster?

Last edited:
Dale
Mentor
2021 Award
Don't get hung up on the number. It is purely an artifact of the choice of units. You can make it have any number you want by picking the units.

The key points are that it is finite and frame invariant.

My point is not what units we use ( miles per second , inches per hour etc), its that if light traveled much slower, say 5 miles per hour, why would I be 3.6 feet tall, if I am 6 feet tall (when stationary ) and going 4/5 of 5 miles per hour?
1. If the speed of light is arbitrary and not linked to another physical principle, then a single photon can determine my size. Nothing other than the photon (there is no connection to any other physical principle) determines my size. That does not seem right!
2. Therefore 186282 mps * is not arbitrary. Why is the speed of light 186282 mps, the only number that gives accurate results for E=MC2?
* You can convert that to any unit you wish, miles per hour, inches per 24 hours etc. The speed is what counts not how you measure that speed.

Last edited:
Nugatory
Mentor
2. Therefore 186282 mps * is not arbitrary. Why is the speed of light 186282 mps, the only number that gives accurate results for E=MC2?
Light is electromagnetic waves. The speed at which these waves propagate is determined by the laws of electricity and magnetism. The only way that ##c## could have a different value that it does would be if the laws of E&M were different from what they are - for example, if the force between two charged particles were different than what we've observed it to be.

If the laws of electricity and magnetism were different in a particular way that made the speed of light 5 mph then I would be 3.6 feet tall (if I was 6 feet when stationary ) if I was going 4/5 of 5 mph ?
In other words it is not my relation to the speed of light *that explains why I am 3.6 feet but rather the principle ( laws of electricity and magnetism ) linked to the velocity of light that explains why I am 3.6 feet tall? In other words particular laws of electricity and magnetism explain why the speed of light is what it is and why I would be 3.6 feet tall ( if the speed of light was 5 mph, I'm 6' and going 4/5 of 5 mph)?
Is that what you are saying? That makes sense to me.
* The relation of my speed to the speed of light is not the explanation. The relationship between the speed of light and my size is a correlation not an explanation.
For example, there is a correlation between crime and ice cream sales. When ice cream sales go up, crime goes up. However, ice cream sales go up in summer (as does crime) and go down in winter (as does crime). Ice cream sales and crime are linked but one does not explain the other. Summer is the explanation. Similarly, my relationship with the speed of light is a correlation but not an explanation as to why my size is different at different velocities? The laws of electricity and magnetism is the explanation?
PS: My degree is in philosophy (hence my name Wittgenstein). Physics is not my field of expertise. Thank you for past help and please help me more!

Last edited:
Dale
Mentor
2021 Award
The idea of a changing speed of light doesn't have any physical significance. All that a changing speed of light would mean is that your units are changing.

The things that have physical significance are dimensionless. Like the ratio of the speed of light to the airspeed velocity of an African swallow. When people think about changes in the speed of light, what they usually are actually interested in are changes to the dimensionless fine structure constant. That has physical significance.

Nugatory
Mentor
PS: My degree is in philosophy (hence my name Wittgenstein).
Huh... Silly me... I had been thinking you were a one-armed Austrian pianist

Physics is not my field of expertise. Thank you for past help and please help me more!

Three references that you may find valuable are:
- Einstein's 1905 paper outlining special relativity. The title is "On the electrodynamics of moving bodies", which gives you a hint as to just how important the connection to electromagnetism is. This paper was Einstein's answer to the great unsolved problem of 19th-century physics, namely the growing realization that the laws of E&M discovered in 1861 could not be reconciled with Newtonian mechanics and Galilean relativity. The presentation is old-fashioned and anyone embarking on a career as a physicist should start with a modern textbook - but Einstein is solving the problem of 1905 in the language of 1905.
- Also by Einstein and widely available online is a book "Relativity: The Special and General Theory". It's written for non-physicists, but not for causal readers.
- Taylor and Wheeler: "Space-Time Physics" for the modern mathematical treatment of relativity.

There's also a mistake in saying you would be 3.6 feet tall.
You would still be 6 feet tall, no matter how you move. From your own point of view anyway.
Someone moving relative to you (for example, because you are moving relative to them, it is all relative) at 4/5 of the speed of light (whatever it was) would measure you 3.6 feet tall, but this is not the same as you yourself saying you are that tall.

I do not know why you say "that does not seem right", it is exactly right if you were moving that fast.

That is explained by the theory of relativity and Lorentz formulas - it explains the relations between various velocity, length and time measurements. And those relations are valid no matter the specific values and units that you chose.

My point is not what units we use ( miles per second , inches per hour etc), its that if light traveled much slower, say 5 miles per hour, why would I be 3.6 feet tall, if I am 6 feet tall (when stationary ) and going 4/5 of 5 miles per hour?
Two errors here: firstly, you yourself do not shrink, other things shrink if they are moving really fast, secondly, length contraction applies in the direction of motion, so think thinner rather than shorter. I am trying to avoid using the phrase "you would SEE" as what you would see with your eyes or a camera would be something else entirely!