From cosmology, the friedmann equations are given by,(adsbygoogle = window.adsbygoogle || []).push({});

##H^2 = (\frac{\dot a}{a})^2 = \frac{8\pi G}{3} \rho \, , \quad \frac{\ddot a}{a} = -\frac{4\pi G}{3}(\rho+3p) \, , \quad## where ##\rho = \frac{1}{2}(\dot \phi^2 + \phi^2)## and ##p = \frac{1}{2}(\dot \phi^2 - \phi^2)##

To get ##\dot H##,

##\dot H = \frac{d}{dt}(\frac{\dot a}{a}) = \frac{\ddot a}{a} - (\frac{\dot a}{a})^2 = -4\pi G(\rho + p) = -4\pi G \dot \phi^2##.

I want to solve for ##H## using this equation, where ##0<t<10^7##. How should I solve this DE? It's ok if the solution is in the implicit form.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Nonlinear integration

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Nonlinear integration | Date |
---|---|

A Stability for a system of nonlinear ODEs | Yesterday at 3:34 PM |

A Solve a non-linear ODE of third order | Feb 20, 2018 |

A Numerical solution for a two dimensional 3rd order nonlinear diff. eq. | Jan 17, 2018 |

System of nonlinear integral equations | Dec 11, 2012 |

Need some help with nonlinear integration | Nov 21, 2004 |

**Physics Forums - The Fusion of Science and Community**