1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Norm of matrix

  1. Mar 2, 2008 #1
    1. The problem statement, all variables and given/known data
    Let A = [a_{ij}] be a mxn matrix. Show that max[tex]_{ij}[/tex]|a[tex]_{ij}[/tex]| ≤ ‖A‖ ≤ √(∑[tex]_{ij}[/tex]|a[tex]_{ij}[/tex])|


    2. Relevant equations



    3. The attempt at a solution

    By the definition ‖A‖=max_{||x||≤1}‖A(x)‖ for all x ∈ Rⁿ.So, ‖A‖≥‖A∘(x₁,..,x_{n})[tex]^{T}[/tex]‖ for x = (0,...,1,...0) with 1 is in the i[tex]^{ij}[/tex] position and so ‖A‖ ≥ ‖A∘(x₁,..,x_{n})[tex]^{T}[/tex]‖ = ||(a[tex]_{i1}[/tex],a[tex]_{i2}[/tex],...,a[tex]_{ij}[/tex])|| = √(a[tex]_{i1}[/tex][tex]^{2}[/tex]+...+a[tex]_{in}[/tex]) ≥ max[tex]_{ij}[/tex]|a[tex]_{ij}[/tex]|.
    I do not know what how to do the upper bound.
     
    Last edited: Mar 2, 2008
  2. jcsd
  3. Mar 2, 2008 #2
    Anyone?
     
  4. Mar 2, 2008 #3

    morphism

    User Avatar
    Science Advisor
    Homework Helper

    That's sort of hard to read - do you want to prove that [itex]\| A \|^2 \leq \sum_{ij} |a_{ij}|^2[/itex]?

    If so, the Cauchy-Schwarz inequality will be very useful.
     
  5. Mar 2, 2008 #4
    Thank you for replying!
    I will think about this.
     
    Last edited: Mar 2, 2008
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...