[tex]Let \text{ } H \text{ }be \text{ }a \text{ } Hilbert \text{ } space, \text{ }K \text{ }be \text{ }a \text{ }closed\text{ }convex\text{ }subset \text{ } of \text{ }H \text{ }and \text{ }x_{0}\in K. \text{ }Then \\N_{K}(x_{0}) =\{y\in K:\langle y,x-x_{0}\rangle \leq 0,\forall x\in K\} .\text{ }Hence, \text{ }if \text{ }K=\left\{ (x,y):x^{2}+y^{2}\leq 1\right\}\\ is \text{ }closed\text{ } and\text{ }convex, \text{ }find \text{ }N_{K}((0,0))? [/tex](adsbygoogle = window.adsbygoogle || []).push({});

Thanks.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Normal cone

Loading...

Similar Threads - Normal cone | Date |
---|---|

I Etymology of "regular" and "normal" spaces | Dec 12, 2016 |

Can't understand a detail in paracompactness->normality | May 22, 2015 |

Surface height from surface normal function | Feb 11, 2014 |

Pochhammer contour over normal Riemann surface? | Nov 23, 2013 |

**Physics Forums - The Fusion of Science and Community**