1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Normal Distribution Integral

  1. Mar 4, 2008 #1
    1. The problem statement, all variables and given/known data

    I'm having difficulty integrating something,
    click http://en.wikipedia.org/wiki/Normal_distribution
    and under Cumulative distribution function, there is an integral - how do you get to the next line?

    2. Relevant equations

    3. The attempt at a solution

    i have tried the substitution of [tex]t=u-\mu[/tex] which gives

    but can't integrate this.
  2. jcsd
  3. Mar 4, 2008 #2


    User Avatar
    Science Advisor
    Homework Helper

    see error functions

    Hi wombat! Welcome to PF :smile:

    All you need is in http://en.wikipedia.org/wiki/Error_function

    Good luck!

    [size=-2](if you're happy, don't forget to mark thread "solved"!)[/size]​
  4. Mar 5, 2008 #3
    Still don't really understand what's what - this to clarify this is what i was originally referring to
    and this is what i got from the error function page
    but i need to integrate from [tex]-\infty[/tex] to x.
    Last edited: Mar 5, 2008
  5. Mar 5, 2008 #4
    Thanks for your help by the way!
  6. Mar 5, 2008 #5


    User Avatar
    Science Advisor
    Homework Helper

    An even function!

    Ah! You didn't take account of the fact that the integrand is the same for -t as for t (an "even function"), so you can mutiply the limits by -1:


    is the same as:


    which is (a multiple of) erfc(-x).

    Then the top of the wikipedia page gives you the answer! :smile:

    [size=-2](if you're happy, don't forget to mark thread "solved"!)[/size]​
  7. Mar 6, 2008 #6
    i still don't get it.
  8. Mar 6, 2008 #7
    i know that
    but i don't end up with
  9. Mar 6, 2008 #8
    should i being using this?

    [tex]\int_{-x}^{\infty}e^{-t^{2}/2}dt\qquad[/tex] = [tex]\int_{-x}^{\infty}{e^{-t^{2}}e^{t^{2}/2}}dt\qquad[/tex]
  10. Mar 6, 2008 #9
    what should [tex]\phi[/tex] equal?

    003dabb870f6a1fc0521a85000ea8090.png ?
  11. Aug 29, 2008 #10
    I think in this case, x should be greater than zero.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook