1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Normal Force on a Ferris Wheel

  1. Nov 12, 2008 #1
    1. The problem statement, all variables and given/known data
    What is the normal force acting upon a person at the top of a ferris wheel that has a radius of 60 meters, and is travelling at a rate of 25 meters/second?

    2. Relevant equations
    Centripital acceleration = velocity²/radius

    Centripetal Force = Gravity Force - Normal Force

    Normal Force = mv²/rtmg

    Gravity Force = mg

    3. The attempt at a solution

    The only way I know of to solve this problem is if the mass is known, but in this question the mass is not given.

    Centripital acceleration = 10.42 m/s²

    I tried drawing a free body force diagram

    What is the next thing I should be considering?

    Attached Files:

    Last edited: Nov 12, 2008
  2. jcsd
  3. Nov 13, 2008 #2


    User Avatar
    Science Advisor
    Homework Helper

    Welcome to PF!

    Hi thekeyofheart! Welcome to PF! :smile:

    Well, you're certainly right … you do need to know the mass to calculate N :confused:

    I think you'll have to call the mass "m", and give an answer as a multiple of m.

    (unless :rolleyes: … perhaps the question is asking for the "g-force", which is really the acceleration as a multiple of g, and for which, of course, you don't need the mass)
  4. Nov 13, 2008 #3
    Re: Welcome to PF!

    Thank you for the welcome, tiny-tim! I have been a follower for a while, but I only recently made an account, and this was my first post.

    I know I tend to overanalyze stuff like this, and I kept trying to figure out a way to complete the problem without knowing the mass. I am using m as a variable, and when I get the expected answer I will report back =)

    Thank you for your advice!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook