Let's define S as a 'normal' set if [tex]\neg(S \in S)[/tex]. Now let's look at the set of all normal sets N. If N is normal, then is belongs to the set of all normal sets N, and therefore it is not normal. On the other hand, if N is not normal, then it doesn't belong to the set of all normal sets N, and therefore it's normal. I'm very confused (or very dumb) :)(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 'normal' set paradox

**Physics Forums | Science Articles, Homework Help, Discussion**