'normal' set paradox

  • Thread starter radou
  • Start date

radou

Homework Helper
3,105
6
Let's define S as a 'normal' set if [tex]\neg(S \in S)[/tex]. Now let's look at the set of all normal sets N. If N is normal, then is belongs to the set of all normal sets N, and therefore it is not normal. On the other hand, if N is not normal, then it doesn't belong to the set of all normal sets N, and therefore it's normal. I'm very confused (or very dumb) :)
 
Last edited:

Hurkyl

Staff Emeritus
Science Advisor
Gold Member
14,847
15
What confuses you?
 

radou

Homework Helper
3,105
6
Well, we started with the assumption that the set of all normal sets N was normal and came across a contradiction - it is not normal. Then again, if we assume that N is not normal, we reach the fact that it is normal. Both ways, we get a contradiction.
 

honestrosewater

Gold Member
2,072
4
Maybe you should change the axioms(s) that allowed you to conclude that N was a set. Which axiom(s) allowed N to be a set?
 

Hurkyl

Staff Emeritus
Science Advisor
Gold Member
14,847
15
Oh good, that's where I was hoping the confusion lied.

Notice that there's a hidden assumption -- there exists a set of all normal sets. So what you have here is a proof by contradiction that this assumption is false!
 

radou

Homework Helper
3,105
6
Yup, right. There's something more. A set can only be an element of another set if this other set is a family of sets, rather than just an ordinary set. So, if N is a family of sets, in the more consistent notation of P(N), then a set is defined as 'normal' if P(N) is not an alement of itself. But, can P(N) actually be an element of itself? It's elements are all subsets of N. I think P(N) can only, by definition, be it's own subset... So, if this is true, then the paradox actually doesn't make sense from the beginning.
 

matt grime

Science Advisor
Homework Helper
9,394
3
radou said:
Yup, right. There's something more. A set can only be an element of another set if this other set is a family of sets
not necessarily

So, if N is a family of sets, in the more consistent notation of P(N)
P(N) usually means the power set of N. what mlore consistent notation are you atalking about?
 

radou

Homework Helper
3,105
6
oops, i messed a few facts up...nevermind, i was talking about the power set P(N).
 
There is nothing fishy about your argument. Though it might be ill posed. The paradox you are conveying is a famous one. It is called a "Godelian riddle" and it highlights the incompleteness theorem formalised and roved by Godel. In a nutshell the incompleteness theorem says that no formal set of axioms for mathematics is complete, meaning that there exist propositions that can neither be proved nor disproved using the axioms.

Here is a better version of your paradox. Denote the set of all two player games that end as S. Define game X with the following rules

1) First player picks a game from set S
2) Second player makes the first move

(as an example of a run of game X, i pick chess and you play the first move.). The question now is. Does X belong in set S?

If it does belong in the set, then consider the following sequence of events. Playing game X the first player chooses a game from S. Let him chose X, since by assumption X is in S. The second player now executes the first move of game X which is to choose a game from S. He too picks X. The players continue in this fashion at infinitum. Clearly then game X does not end and therefore it does not belong in S.

Now for the converse. Assume that X is not in S. Then in playing game X, the argument above no longer holds, since X is not in S. Hence game X will now end, and therefore belongs in S.
 

pwsnafu

Science Advisor
1,080
85
The paradox you are conveying is a famous one. It is called a "Godelian riddle" and it highlights the incompleteness theorem formalised and roved by Godel.
No. It's http://en.wikipedia.org/wiki/Russel%27s_paradox" [Broken]. This is a problem in whether something can be defined, not proved. "Q is the Gödel number of a false formula" simply doesn't exist.
Personally I think the http://en.wikipedia.org/wiki/Berry%27s_paradox" [Broken] is more interesting.

In a nutshell the incompleteness theorem says that no formal set of axioms for mathematics is complete
Not true. You can have completeness or consistency, you just can't have both.
 
Last edited by a moderator:
242
0
maybe xzibit can help.

i-heard-you-like-proper-sets-6a8bad.jpg
 

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top