Let G be a group and H a subgroup of G. We define the following:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]N_{G}(H) = \{g \in G \,\,|\,\, g^{-1}hg \in H,\, for\, all\,\, h\in H\}[/tex]

Show that [tex]N_{G}(H)[/tex] is a subgroup of G.

_______________________

I've shown that for all [itex]x,\, y[/itex] of [itex]N_{G}(H)[/itex], [itex]xy[/itex] is an element of [itex]N_{G}(H)[/itex], but how do I show that [itex]x^{-1}[/itex] is an element of [itex]N_{G}(H)[/itex] ?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Normal subgroups

**Physics Forums | Science Articles, Homework Help, Discussion**