Normal to coordinate curve

122
19

Main Question or Discussion Point

Let $$\phi(x^1,x^2....,x^n) =c$$ be a surface. What is unit Normal to the surface?

I know how to find equation of normal to a surface. It is given by:
$$\hat{e_{n}}=\frac{\nabla\phi}{|\nabla\phi|}$$


However the answer is given using metric tensor which I am not able to derive. Here is the answer

$$({g^{\alpha\beta}}{\frac{\partial\phi}{\partial x^{u}}}{\frac{\partial\phi}{\partial x^{v}}})^{-1/2} {g^{r\alpha}}{\frac{\partial\phi}{\partial x^{\alpha}}}$$

How can I Derive this?
 

Answers and Replies

11,093
4,601
The unit normal to the surface has a length of one. It is a vector that is perpendicular to vectors in the tangent plane at that chosen point. The gradient vector at that point is also perpendicular to the tangent plane and so by computing the gradient and dividing the gradient vector by its own length we get the unit normal vector to the surface.

It’s explained in more detail in this video lecture

 
martinbn
Science Advisor
1,600
414
The gradient ##\nabla \phi## is the vector dual to the differential. In coordinates you have ##d\phi=\frac{\partial\phi}{\partial x^\alpha}dx^\alpha##, so for the gradient you get ##\nabla \phi = g^{r\alpha}\frac{\partial\phi}{\partial x^\alpha}\frac{\partial}{\partial x^r}##. The norm squared will be ##g^{uv}\frac{\partial\phi}{\partial x^u}\frac{\partial\phi}{\partial x^v}##. So the two expressions are the same.
 
122
19
The gradient ##\nabla \phi## is the vector dual to the differential. In coordinates you have ##d\phi=\frac{\partial\phi}{\partial x^\alpha}dx^\alpha##, so for the gradient you get ##\nabla \phi = g^{r\alpha}\frac{\partial\phi}{\partial x^\alpha}\frac{\partial}{\partial x^r}##. The norm squared will be ##g^{uv}\frac{\partial\phi}{\partial x^u}\frac{\partial\phi}{\partial x^v}##. So the two expressions are the same.
Thankyou. But can you elaborate it in more detail. Please. I started Tensors few days ago.
 

Related Threads for: Normal to coordinate curve

Replies
6
Views
16K
Replies
2
Views
5K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
1
Views
7K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
1
Views
2K
Replies
12
Views
2K
Top