I was just trying to think of a simple relation to find the number of distinct diagrams to a given order within a theory (specifically I am thinking of a [tex]\phi^{4}[/tex] scalar theory). I am reading Tony Zee's book and am working through his "baby problem" where he expands the integral:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int_{-\inf}^{\inf} dq e^{-\frac{1}{2}m^{2}q^{2}+Jq-\frac{\lambda}{4!}q^{4}[/tex]

in both in powers of [tex]\lambda[/tex] and J so that we can pick out diagrams to a specific order in both.

So is there a way to find the total number of distinct diagrams to order [tex](\lambda^{n},J^{m})[/tex]?

Thanks in Advanced

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Number of distinct diagrams.

**Physics Forums | Science Articles, Homework Help, Discussion**