1. Prove (a,b)=1 iff (a+b, ab)=1(adsbygoogle = window.adsbygoogle || []).push({});

I'm guessing the main tools I have here are xa+yb=1 and the lemma behind the Euclidean algorithm: if a=bq+r, (a,b)=(b,r). I figure I need to do lots of manipulation to build up a more complicated equality, but I can't make it quite work. Any suggestions?

2. Suppose x an integer such that 0<x<n^3. Show there exist a_0, a_1, a_2 in {0,1,...,n-1} such that x=a_0+a_1n+a_2n^2

I don't even know where to start this one.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Number theory questions

**Physics Forums | Science Articles, Homework Help, Discussion**