(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

take the rational function R(x)=(a+bx)\(c+dx). What does the interpolatory requirment R(xi)=yi, i=1,2,3,4 amount to? under what conditions can you find coefficients? uniquely?

2. Relevant equations

3. The attempt at a solution

Let y=[y1,y2,y3,y4] and v=[a,b,c,d] and let A be an 4x4 matrix. then I want to try to write this as Av=y and the solution would would exist and be unique when A is invertible. so I write a+bxi=(c+dxi)yi. then I can write a+bxi-cyi-d(xi)(yi)=0 but this wont give me the solution because we could just write a=b=c=d=0 for any x and y. since I know yi and xi I could have a+bxi-cyi = d(xi)(yi) and set up the matrix that way but it still won't give me what I want since I wouldn't be able to find d. Am I on the right track? any suggestions on where to go from here? thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Numerical analysis

**Physics Forums | Science Articles, Homework Help, Discussion**