- #26

- 894

- 0

If he'd be willing to come talk basics about his research, that would be a lot of fun. I've always been curious how they do numerical GR.I know someone (online) who is a numerical relativist working on the 2-body problem at The API in Jena (Germany), but if he's on this forum I don't know what his nickname is. He's a recent PhD so I'd say that would work... maybe I can ask him to come here, or I can relay a question to him if you like?

If you can only relay questions, I guess what I wrote in https://www.physicsforums.com/showpost.php?p=2646415&postcount=9" is along the lines of what I'm curious about. I have a feeling my ignorance of the field would require some translating before those are useful questions though.

Probably the most approachable question is this:

Naively, when I look at Einstein's equations, it only gives information for the Ricci curvature ... so how do you determine the Weyl curvature evolution in numerical GR?

My understanding is that in analytic solutions they use symmetry arguments and boundary conditions at infinity to constrain the form of the metric, which effectively puts in the Weyl terms. Maybe that is not correct, but even if it is along the right track, in dynamic situations you don't have those luxuries. Naively it looks like the Weyl curvature can just evolve however it wants (I assume that is wrong for some reason though).

Last edited by a moderator: